Two simple and rugged designs for creating microfluidic sheath flow

被引:92
作者
Howell, Peter B., Jr. [1 ]
Golden, Joel P. [1 ]
Hilliard, Lisa R. [1 ]
Erickson, Jeffrey S. [1 ]
Mott, David R. [2 ]
Ligler, Frances S. [1 ]
机构
[1] USN, Res Lab, Ctr Biomol Sci & Engn, Washington, DC 20375 USA
[2] USN, Res Lab, Computat Phys & Fluid Dynam Lab, Washington, DC 20375 USA
关键词
D O I
10.1039/b719381e
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A simple design capable of 2-dimensional hydrodynamic focusing is proposed and successfully demonstrated. In the past, most microfluidic sheath flow systems have often only confined the sample solution on the sides, leaving the top and bottom of the sample stream in contact with the floor and ceiling of the channel. While relatively simple to build, these designs increase the risk of adsorption of sample components to the top and bottom of the channel. A few designs have been successful in completely sheathing the sample stream, but these typically require multiple sheath inputs and several alignment steps. In the designs presented here, full sheathing is accomplished using as few as one sheath input, which eliminates the need to carefully balance the flow of two or more sheath inlets. The design is easily manufactured using current microfabrication techniques. Furthermore, the sample and sheath fluid can be subsequently separated for recapture of the sample fluid or re-use of the sheath fluid. Designs were demonstrated in poly(dimethylsiloxane) (PDMS) using soft lithography and poly(methyl methacrylate) (PMMA) using micromilling and laser ablation.
引用
收藏
页码:1097 / 1103
页数:7
相关论文
共 39 条
[1]   Modular concept of a laboratory on a chip for chemical and biochemical analysis [J].
Blankenstein, G ;
Larsen, UD .
BIOSENSORS & BIOELECTRONICS, 1998, 13 (3-4) :427-438
[2]   Three-dimensional hydrodynamic focusing in two-layer polydimethylsiloxane (PDMS) microchannels [J].
Chang, Chih-Chang ;
Huang, Zhi-Xiong ;
Yang, Ruey-Jen .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2007, 17 (08) :1479-1486
[3]   Cytometry and velocimetry on a microfluidic chip using polyelectrolytic salt bridges [J].
Chun, HG ;
Chung, TD ;
Kim, HC .
ANALYTICAL CHEMISTRY, 2005, 77 (08) :2490-2495
[4]   A DEVICE FOR COUNTING SMALL PARTICLES SUSPENDED IN A FLUID THROUGH A TUBE [J].
CROSLANDTAYLOR, PJ .
NATURE, 1953, 171 (4340) :37-38
[5]   An integrated microfluidic system for reaction, high-sensitivity detection, and sorting of fluorescent cells and particles [J].
Dittrich, PS ;
Schwille, P .
ANALYTICAL CHEMISTRY, 2003, 75 (21) :5767-5774
[6]   Rapid prototyping of microfluidic systems in poly(dimethylsiloxane) [J].
Duffy, DC ;
McDonald, JC ;
Schueller, OJA ;
Whitesides, GM .
ANALYTICAL CHEMISTRY, 1998, 70 (23) :4974-4984
[7]  
Eyal S, 2002, ELECTROPHORESIS, V23, P2653, DOI 10.1002/1522-2683(200208)23:16<2653::AID-ELPS2653>3.0.CO
[8]  
2-H
[9]   Electrokinetically driven micro flow cytometers with integrated fiber optics for on-line cell/particle detection [J].
Fu, LM ;
Yang, RJ ;
Lin, CH ;
Pan, YJ ;
Lee, GB .
ANALYTICA CHIMICA ACTA, 2004, 507 (01) :163-169
[10]   Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing [J].
Gawad, S ;
Schild, L ;
Renaud, P .
LAB ON A CHIP, 2001, 1 (01) :76-82