Structural and stability properties of P0 nonlinear complementarity problems

被引:23
作者
Facchinei, F [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Informat & Sistemist, I-00185 Rome, Italy
关键词
complementary problems; P-0; functions; connectedness; stability;
D O I
10.1287/moor.23.3.735
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider P-0 nonlinear complementarity problems and study the connectedness and stability of the solutions by applying degree theory and the Mountain Pass Theorem to a smooth reformulation of the complementarity problem. We show that the solution set is connected and bounded if a bounded isolated component of the solution set exists and that a solution is locally unique if and only if it is globally unique. Furthermore, we prove that a solution is stable in Ha's sense if and only if it is globally unique, while the complementarity problem is stable if and only if the solution set is bounded.
引用
收藏
页码:735 / 745
页数:11
相关论文
共 30 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]   P-c-matrices and the linear complementarity problem [J].
Cao, ML ;
Ferris, MC .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 246 :299-312
[3]  
Clarke F.H., 1990, Optimization and Nonsmooth Analysis, DOI DOI 10.1137/1.9781611971309
[4]  
Cottle RW., 1992, LINEAR COMPLEMENTARI
[5]   A semismooth equation approach to the solution of nonlinear complementarity problems [J].
DeLuca, T ;
Facchinei, F ;
Kanzow, C .
MATHEMATICAL PROGRAMMING, 1996, 75 (03) :407-439
[6]  
EKELAND I, 1990, CONVEXITY MEHTODS HA
[7]  
FACCHINEI F, 1997, 1197 DIS U ROM
[8]  
FACCHINEI F, 1997, 1297 DIS U ROM
[9]  
Fischer A., 1995, RECENT ADV NONSMOOTH, P88
[10]  
FONSECA I., 1995, DEGREE THEORY ANAL A