A characterization of spectral integral variation in two places for Laplacian matrices

被引:14
作者
Kirkland, S [1 ]
机构
[1] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1080/0308108031000122506
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe the graphs having the property that adding a particular edge will result in exactly two Laplacian eigenvalues increasing by I and the other Laplacian eigenvalues remaining fixed. For a certain subclass of graphs, we also characterize the Laplacian integral graphs with that property. Finally, we investigate a situation in which the algebraic connectivity is one of the eigenvalues that increases by I.
引用
收藏
页码:79 / 98
页数:20
相关论文
共 11 条
[1]  
[Anonymous], 1976, GRAPH THEORY APPL
[2]  
[Anonymous], LINEAR ALGEBRA APPL
[3]  
Brualdi R. A., 1991, COMBINATORIAL MATRIX, V39
[4]   Spectral integral variations of degree maximal graphs [J].
Fan, YZ .
LINEAR & MULTILINEAR ALGEBRA, 2003, 51 (02) :147-154
[5]   On spectral integral variations of graphs [J].
Fan, YZ .
LINEAR & MULTILINEAR ALGEBRA, 2002, 50 (02) :133-142
[6]  
FIEDLER M, 1973, CZECH MATH J, V23, P298
[7]  
Horn R. A., 1986, Matrix analysis
[8]   A bound on the algebraic connectivity of a graph in terms of the number of cutpoints [J].
Kirkland, S .
LINEAR & MULTILINEAR ALGEBRA, 2000, 47 (01) :93-103
[9]   On graphs with equal algebraic and vertex connectivity [J].
Kirkland, SJ ;
Molitierno, JJ ;
Neumann, M ;
Shader, BL .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 341 (1-3) :45-56
[10]   LAPLACE EIGENVALUES OF GRAPHS - A SURVEY [J].
MOHAR, B .
DISCRETE MATHEMATICS, 1992, 109 (1-3) :171-183