On the phase condition and its solution for Hilbert transform pairs of wavelet bases

被引:31
作者
Ozkaramanli, H [1 ]
Yu, RY [1 ]
机构
[1] Eastern Mediterranean Univ, Dept Elect & Elect Engn, Mersin, Turkey
关键词
Hilbert transforms; phase condition; scaling filters; wavelets;
D O I
10.1109/TSP.2003.818996
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this correspondence, the phase condition on the scaling filters of two wavelet bases that renders the corresponding wavelets as Hilbert transform pairs is studied. An alternative and equivalent phase condition is derived. With the equivalent condition and using Fourier series expansions, we show that the solution for which the corresponding scaling filters are offset from one another by a half sample is the only solution satisfying the phase condition.
引用
收藏
页码:3293 / 3294
页数:2
相关论文
共 10 条
[1]  
Abry P., 1994, Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis (Cat. No.94TH8007), P225, DOI 10.1109/TFSA.1994.467252
[2]  
Abry P., 1997, ONDELETTES TURBULENC
[3]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[4]   On the theory of orthogonal function systems (First announcement) [J].
Haar, A .
MATHEMATISCHE ANNALEN, 1910, 69 :331-371
[5]  
Kingsbury N. G., 1999, PHIL T R SOC LONDO A
[6]  
Oppenheim A. V., 1989, DISCRETE TIME SIGNAL
[7]  
Ozturk E, 2000, INT CONF ACOUST SPEE, P2641, DOI 10.1109/ICASSP.2000.861015
[8]  
Selesnick IW, 2001, INT CONF ACOUST SPEE, P3673, DOI 10.1109/ICASSP.2001.940639
[9]   The design of approximate Hilbert transform pairs of wavelet bases [J].
Selesnick, IW .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (05) :1144-1152
[10]   Hilbert transform pairs of wavelet bases [J].
Selesnick, IW .
IEEE SIGNAL PROCESSING LETTERS, 2001, 8 (06) :170-173