Graded mitogen-activated protein kinase activity precedes switch-like c-fos induction in mammalian cells

被引:82
作者
MacKeigan, JP [1 ]
Murphy, LO [1 ]
Dimitri, CA [1 ]
Blenis, J [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Cell Biol, Boston, MA 02115 USA
关键词
D O I
10.1128/MCB.25.11.4676-4682.2005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The mitogen-activated protein kinase (MAPK) pathway is an evolutionarily conserved signaling module that controls important cell fate decisions in a variety of physiological contexts. During Xenopus oocyte maturation, the MAPK cascade converts an increasing progesterone stimulus into a switch-like, all-or-nothing response. While the importance of such switch-like behavior is widely discussed in the literature, it is not known whether the MAPK pathway in mammalian cells exhibits a switch-like or graded response. For this study, we used flow cytometry and immunofluorescence to generate single-cell measurements of MAPK signaling in Swiss 3T3 fibroblasts. In contrast to the case in Xenopus oocytes, we found that ERK activation in individual mammalian cells is not ultrasensitive and shows a graded response to changes in agonist concentration. Thus, the conserved MAPK signaling module exhibits different systems-level properties in different cellular contexts. Furthermore, the graded ERK response was converted into a more switch-like behavior at the level of immediate-early gene induction and cell cycle progression. Thus, while MAPK signaling is involved in all-or-nothing cell fate decisions for both Xenopus oocyte maturation and mammalian fibroblast proliferation, the underlying mechanisms responsible for the switch-like nature of the cellular responses are different in these two systems, with the mechanism appearing to fie downstream of the kinase cascade in mammalian fibroblasts.
引用
收藏
页码:4676 / 4682
页数:7
相关论文
共 20 条
[1]   Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feed back systems [J].
Angeli, D ;
Ferrell, JE ;
Sontag, ED .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (07) :1822-1827
[2]   Bistabillity in the JNK cascade [J].
Bagowski, CP ;
Ferrell, JE .
CURRENT BIOLOGY, 2001, 11 (15) :1176-1182
[3]   ERKS - A FAMILY OF PROTEIN-SERINE THREONINE KINASES THAT ARE ACTIVATED AND TYROSINE PHOSPHORYLATED IN RESPONSE TO INSULIN AND NGF [J].
BOULTON, TG ;
NYE, SH ;
ROBBINS, DJ ;
IP, NY ;
RADZIEJEWSKA, E ;
MORGENBESSER, SD ;
DEPINHO, RA ;
PANAYOTATOS, N ;
COBB, MH ;
YANCOPOULOS, GD .
CELL, 1991, 65 (04) :663-675
[4]   Nuclear translocation of p42/p44 mitogen-activated protein kinase is required for growth factor-induced gene expression and cell cycle entry [J].
Brunet, A ;
Roux, D ;
Lenormand, P ;
Dowd, S ;
Keyse, S ;
Pouysségur, J .
EMBO JOURNAL, 1999, 18 (03) :664-674
[5]   The phosphoinositide 3-kinase pathway [J].
Cantley, LC .
SCIENCE, 2002, 296 (5573) :1655-1657
[6]   NUCLEAR-LOCALIZATION AND REGULATION OF ERK-ENCODED AND RSK-ENCODED PROTEIN-KINASES [J].
CHEN, RH ;
SARNECKI, C ;
BLENIS, J .
MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (03) :915-927
[7]   ERKs, extracellular signal-regulated MAP-2 kinases [J].
Cobb, Melanie H. ;
Robbins, David J. ;
Boulton, Teri C. .
CURRENT OPINION IN CELL BIOLOGY, 1991, 3 (06) :1025-1032
[8]   How regulated protein translocation can produce switch-like responses [J].
Ferrell, JE .
TRENDS IN BIOCHEMICAL SCIENCES, 1998, 23 (12) :461-465
[9]   The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes [J].
Ferrell, JE ;
Machleder, EM .
SCIENCE, 1998, 280 (5365) :895-898
[10]   THE PROTEIN-KINASE ENCODED BY THE AKT PROTOONCOGENE IS A TARGET OF THE PDGF-ACTIVATED PHOSPHATIDYLINOSITOL 3-KINASE [J].
FRANKE, TF ;
YANG, SI ;
CHAN, TO ;
DATTA, K ;
KAZLAUSKAS, A ;
MORRISON, DK ;
KAPLAN, DR ;
TSICHLIS, PN .
CELL, 1995, 81 (05) :727-736