A User's Guide to Solving Dynamic Stochastic Games Using the Homotopy Method

被引:46
作者
Borkovsky, Ron N. [1 ]
Doraszelski, Ulrich [2 ]
Kryukov, Yaroslav [3 ]
机构
[1] Univ Toronto, Rotman Sch Management, Toronto, ON M5S 3E6, Canada
[2] Harvard Univ, Dept Econ, Cambridge, MA 02138 USA
[3] Carnegie Mellon Univ, Tepper Sch Business, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
GENERAL EQUILIBRIUM-MODEL; ALGORITHM; CODES; SUITE;
D O I
10.1287/opre.1100.0843
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper provides a step-by-step guide to solving dynamic stochastic games using the homotopy method. The homotopy method facilitates exploring the equilibrium correspondence in a systematic fashion; it is especially useful in games that have multiple equilibria. We discuss the theory of the homotopy method and its implementation and present two detailed examples of dynamic stochastic games that are solved using this method.
引用
收藏
页码:1116 / 1132
页数:17
相关论文
共 34 条
[31]  
Sommese AJ, 2005, NUMERICAL SOLUTION OF SYSTEMS OF POLYNOMIALS: ARISING IN ENGINEERING AND SCIENCE, P1, DOI 10.1142/9789812567727
[32]   Algorithm 777: HOMPACK90: A suite of Fortran 90 codes for globally convergent homotopy algorithms [J].
Watson, LT ;
Sosonkina, M ;
Melville, RC ;
Morgan, AP ;
Walker, HF .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1997, 23 (04) :514-549
[33]   HOMPACK - A SUITE OF CODES FOR GLOBALLY CONVERGENT HOMOTOPY ALGORITHMS [J].
WATSON, LT ;
BILLUPS, SC ;
MORGAN, AP .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1987, 13 (03) :281-310
[34]  
ZANGWILL WI, 1981, PATHWAYS SOLUTIONS F