An integrated fast Fourier transform-based phase-field and crystal plasticity approach to model recrystallization of three dimensional polycrystals

被引:108
作者
Chen, L. [1 ]
Chen, J. [2 ]
Lebensohn, R. A. [3 ]
Ji, Y. Z. [1 ]
Heo, T. W. [1 ]
Bhattacharyya, S. [1 ]
Chang, K. [1 ]
Mathaudhu, S. [4 ]
Liu, Z. K. [1 ]
Chen, L. -Q. [1 ]
机构
[1] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Altoona Coll, Dept Engn, Altoona, PA 16601 USA
[3] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87845 USA
[4] US Army Res Off, Div Mat Sci, Res Triangle Pk, NC 27709 USA
基金
美国国家科学基金会;
关键词
Phase-field method; Crystal plasticity; Grain growth; Recrystallization; STATIC RECRYSTALLIZATION; ELASTIC INHOMOGENEITY; NONLINEAR COMPOSITES; CELLULAR-AUTOMATON; NUMERICAL-METHOD; SUBGRAIN GROWTH; SIMULATION; EVOLUTION; MICROSTRUCTURE; KINETICS;
D O I
10.1016/j.cma.2014.12.007
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A fast Fourier transform (FFT) based computational approach integrating phase-field method (PFM) and crystal plasticity (CP) is proposed to model recrystallization of plastically deformed polycrystals in three dimensions (3-D). CP at the grain level is employed as the constitutive description to predict the inhomogeneous distribution of strain and stress fields after plastic deformation of a polycrystalline aggregate while the kinetics of recrystallization is obtained employing a PFM in the plastically deformed grain structure. The elasto-viscoplastic equilibrium is guaranteed during each step of temporal phase-field evolution. Static recrystallization involving plasticity during grain growth is employed as an example to demonstrate the proposed computational framework. The simulated recrystallization kinetics is compared using the classical Johnson-Mehl-Avrami-Kolmogorov (JMAK) theory. This study also gives us a new computational pathway to explore the plasticity-driven evolution of 3D microstructures. Published by Elsevier B.V.
引用
收藏
页码:829 / 848
页数:20
相关论文
共 49 条
[1]   Combining phase field approach and homogenization methods for modelling phase transformation in elastoplastic media [J].
Ammar, Kais ;
Appolaire, Benoit ;
Cailletaud, Georges ;
Forest, Samuel .
EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS, 2009, 18 (5-6) :485-523
[2]   Phase field modeling of elasto-plastic deformation induced by diffusion controlled growth of a misfitting spherical precipitate [J].
Ammar, Kais ;
Appolaire, Benoit ;
Cailletaud, Georges ;
Forest, Samuel .
PHILOSOPHICAL MAGAZINE LETTERS, 2011, 91 (03) :164-172
[3]   Validation of a numerical method based on Fast Fourier Transforms for heterogeneous thermoelastic materials by comparison with analytical solutions [J].
Anglin, B. S. ;
Lebensohn, R. A. ;
Rollett, A. D. .
COMPUTATIONAL MATERIALS SCIENCE, 2014, 87 :209-217
[4]   Kinetics of phase change I - General theory [J].
Avrami, M .
JOURNAL OF CHEMICAL PHYSICS, 1939, 7 (12) :1103-1112
[5]  
Avrami M., 1940, J CHEM PHYS, V8, P212, DOI [10.1063/1.1750631, DOI 10.1063/1.1750631]
[6]   A phase-field model of stress effect on grain boundary migration [J].
Bhattacharyya, Saswata ;
Heo, Tae Wook ;
Chang, Kunok ;
Chen, Long-Qing .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2011, 19 (03)
[7]   Phase-field simulation of solidification [J].
Boettinger, WJ ;
Warren, JA ;
Beckermann, C ;
Karma, A .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2002, 32 :163-194
[8]   Phase-field modeling of bimodal microstructures in nickel-based superalloys [J].
Botissinot, G. ;
Finel, A. ;
Le Bouar, Y. .
ACTA MATERIALIA, 2009, 57 (03) :921-931
[9]  
Budiansky B., 1961, Theoretical prediction of plastic strains of polycrystals
[10]   Explicit finite deformation analysis of isogeometric membranes [J].
Chen, Lei ;
Nhon Nguyen-Thanh ;
Hung Nguyen-Xuan ;
Rabczuk, Timon ;
Bordas, Stephane Pierre Alain ;
Limbert, Georges .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 277 :104-130