Explicit finite deformation analysis of isogeometric membranes

被引:60
作者
Chen, Lei [1 ,2 ]
Nhon Nguyen-Thanh [3 ]
Hung Nguyen-Xuan [4 ]
Rabczuk, Timon [3 ,5 ]
Bordas, Stephane Pierre Alain [6 ]
Limbert, Georges [1 ,7 ]
机构
[1] Univ Southampton, Fac Engn & Environm, Natl Ctr Adv Tribol Southampton nCATS, Southampton SO17 1BJ, Hants, England
[2] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[3] Bauhaus Univ Weimar, Inst Struct Mech, D-99423 Weimar, Germany
[4] Duy Tan Univ, Da Nang, Vietnam
[5] Korea Univ, Sch Civil Environm & Architectural Engn, Seoul 136701, South Korea
[6] Cardif Univ, Cardiff Sch Engn, Inst Modelling & Simulat Mech & Mat, Cardiff CF24 3AA, Wales
[7] Univ Southampton, Fac Engn & Environm, Bioengn Sci Res Grp, Southampton SO17 1BJ, Hants, England
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
Membrane; Kirchhoff-Love shell; Isogeometric; NURBS; Explicit; Dynamic relaxation; FLUID-STRUCTURE INTERACTION; LARGE DEFLECTION ANALYSIS; MESHFREE THIN SHELL; ELEMENT-ANALYSIS; MECHANICS; MODEL; ALGORITHMS; DYNAMICS; NURBS;
D O I
10.1016/j.cma.2014.04.015
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
NURBS-based isogeometric analysis was first extended to thin shell/membrane structures which allows for finite membrane stretching as well as large deflection and bending strain. The assumed non-linear kinematics employs the Kirchhoff-Love shell theory to describe the mechanical behaviour of thin to ultra-thin structures. The displacement fields are interpolated from the displacements of control points only, and no rotational degrees of freedom are used at control points. Due to the high order C-k (k >= 1) continuity of NURBS shape functions the Kirchhoff-Love theory can be seamlessly implemented. An explicit time integration scheme is used to compute the transient response of membrane structures to time-domain excitations, and a dynamic relaxation method is employed to obtain steady-state solutions. The versatility and good performance of the present formulation are demonstrated with the aid of a number of test cases, including a square membrane strip under static pressure, the inflation of a spherical shell under internal pressure, the inflation of a square airbag and the inflation of a rubber balloon. The mechanical contribution of the bending stiffness is also evaluated. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:104 / 130
页数:27
相关论文
共 64 条
[1]  
[Anonymous], 2012, ABAQUS THEOR MAN
[2]  
[Anonymous], 1984, NONLINEAR ELASTIC DE
[3]   Reverse engineering the euglenoid movement [J].
Arroyo, Marino ;
Heltai, Luca ;
Millan, Daniel ;
DeSimone, Antonio .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (44) :17874-17879
[4]  
Bathe KJ, 1982, FINITE ELEMENT PROCE, P20071
[5]   NURBS-based isogeometric analysis for the computation of flows about rotating components [J].
Bazilevs, Y. ;
Hughes, T. J. R. .
COMPUTATIONAL MECHANICS, 2008, 43 (01) :143-150
[6]   Isogeometric fluid-structure interaction: theory, algorithms, and computations [J].
Bazilevs, Y. ;
Calo, V. M. ;
Hughes, T. J. R. ;
Zhang, Y. .
COMPUTATIONAL MECHANICS, 2008, 43 (01) :3-37
[7]   Isogeometric fluid-structure interaction analysis with applications to arterial blood flow [J].
Bazilevs, Y. ;
Calo, V. M. ;
Zhang, Y. ;
Hughes, T. J. R. .
COMPUTATIONAL MECHANICS, 2006, 38 (4-5) :310-322
[8]   Isogeometric analysis using T-splines [J].
Bazilevs, Y. ;
Calo, V. M. ;
Cottrell, J. A. ;
Evans, J. A. ;
Hughes, T. J. R. ;
Lipton, S. ;
Scott, M. A. ;
Sederberg, T. W. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) :229-263
[9]   STRESS PROJECTION FOR MEMBRANE AND SHEAR LOCKING IN SHELL FINITE-ELEMENTS [J].
BELYTSCHKO, T ;
STOLARSKI, H ;
LIU, WK ;
CARPENTER, N ;
ONG, JSJ .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1985, 51 (1-3) :221-258
[10]   EXPLICIT ALGORITHMS FOR THE NONLINEAR DYNAMICS OF SHELLS [J].
BELYTSCHKO, T ;
LIN, JI ;
TSAY, CS .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1984, 42 (02) :225-251