Explicit finite deformation analysis of isogeometric membranes

被引:60
作者
Chen, Lei [1 ,2 ]
Nhon Nguyen-Thanh [3 ]
Hung Nguyen-Xuan [4 ]
Rabczuk, Timon [3 ,5 ]
Bordas, Stephane Pierre Alain [6 ]
Limbert, Georges [1 ,7 ]
机构
[1] Univ Southampton, Fac Engn & Environm, Natl Ctr Adv Tribol Southampton nCATS, Southampton SO17 1BJ, Hants, England
[2] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[3] Bauhaus Univ Weimar, Inst Struct Mech, D-99423 Weimar, Germany
[4] Duy Tan Univ, Da Nang, Vietnam
[5] Korea Univ, Sch Civil Environm & Architectural Engn, Seoul 136701, South Korea
[6] Cardif Univ, Cardiff Sch Engn, Inst Modelling & Simulat Mech & Mat, Cardiff CF24 3AA, Wales
[7] Univ Southampton, Fac Engn & Environm, Bioengn Sci Res Grp, Southampton SO17 1BJ, Hants, England
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
Membrane; Kirchhoff-Love shell; Isogeometric; NURBS; Explicit; Dynamic relaxation; FLUID-STRUCTURE INTERACTION; LARGE DEFLECTION ANALYSIS; MESHFREE THIN SHELL; ELEMENT-ANALYSIS; MECHANICS; MODEL; ALGORITHMS; DYNAMICS; NURBS;
D O I
10.1016/j.cma.2014.04.015
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
NURBS-based isogeometric analysis was first extended to thin shell/membrane structures which allows for finite membrane stretching as well as large deflection and bending strain. The assumed non-linear kinematics employs the Kirchhoff-Love shell theory to describe the mechanical behaviour of thin to ultra-thin structures. The displacement fields are interpolated from the displacements of control points only, and no rotational degrees of freedom are used at control points. Due to the high order C-k (k >= 1) continuity of NURBS shape functions the Kirchhoff-Love theory can be seamlessly implemented. An explicit time integration scheme is used to compute the transient response of membrane structures to time-domain excitations, and a dynamic relaxation method is employed to obtain steady-state solutions. The versatility and good performance of the present formulation are demonstrated with the aid of a number of test cases, including a square membrane strip under static pressure, the inflation of a spherical shell under internal pressure, the inflation of a square airbag and the inflation of a rubber balloon. The mechanical contribution of the bending stiffness is also evaluated. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:104 / 130
页数:27
相关论文
共 64 条
[11]  
Belytschko T., 2014, Nonlinear Finite Elements for Continua and Structures, VSecond
[12]   A large deformation, rotation-free, isogeometric shell [J].
Benson, D. J. ;
Bazilevs, Y. ;
Hsu, M-C ;
Hughes, T. J. R. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (13-16) :1367-1378
[13]   Isogeometric shell analysis: The Reissner-Mindlin shell [J].
Benson, D. J. ;
Bazilevs, Y. ;
Hsu, M. C. ;
Hughes, T. J. R. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) :276-289
[14]   Mechanical characterization of elastic membranes:: Cell mechanics applications [J].
Bernal, Roberto ;
Tassius, Chantal ;
Melo, Francisco ;
Geminard, Jean-Christophe .
APPLIED PHYSICS LETTERS, 2007, 90 (06)
[15]   Finite element analysis of air supported membrane structures [J].
Bonet, J ;
Wood, RD ;
Mahaney, J ;
Heywood, P .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 190 (5-7) :579-595
[16]   Geometry and physics of wrinkling [J].
Cerda, E ;
Mahadevan, L .
PHYSICAL REVIEW LETTERS, 2003, 90 (07) :4
[17]  
Cirak F, 2000, INT J NUMER METH ENG, V47, P2039, DOI 10.1002/(SICI)1097-0207(20000430)47:12<2039::AID-NME872>3.0.CO
[18]  
2-1
[19]   Fully C1-conforming subdivision elements for finite deformation thin-shell analysis [J].
Cirak, F ;
Ortiz, M .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2001, 51 (07) :813-833
[20]   Isogeometric analysis of structural vibrations [J].
Cottrell, J. A. ;
Reali, A. ;
Bazilevs, Y. ;
Hughes, T. J. R. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (41-43) :5257-5296