A large deformation, rotation-free, isogeometric shell

被引:293
作者
Benson, D. J. [1 ]
Bazilevs, Y. [1 ]
Hsu, M-C [1 ]
Hughes, T. J. R. [2 ]
机构
[1] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA
[2] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
Isogeometric analysis; NURBS; Shells; Rotation-free; Metal stamping; FINITE-ELEMENT-ANALYSIS; FLUID-STRUCTURE INTERACTION; NURBS; ALGORITHMS; TURBULENCE; DYNAMICS; FLOWS;
D O I
10.1016/j.cma.2010.12.003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Conventional finite shell element formulations use rotational degrees of freedom to describe the motion of the fiber in the Reissner-Mindlin shear deformable shell theory, resulting in an element with five or six degrees of freedom per node. These additional degrees of freedom are frequently the source of convergence difficulties in implicit structural analyses, and, unless the rotational inertias are scaled, control the time step size in explicit analyses. Structural formulations that are based on only the translational degrees of freedom are therefore attractive. Although rotation-free formulations using C(0) basis functions are possible, they are complicated in comparison to their C(1) counterparts. A C(k)-continuous, k >= 1, NURBS-based isogeometric shell for large deformations formulated without rotational degrees of freedom is presented here. The effect of different choices for defining the shell normal vector is demonstrated using a simple eigenvalue problem, and a simple lifting operator is shown to provide the most accurate solution. Higher order elements are commonly regarded as inefficient for large deformation analyses, but a traditional shell benchmark problem demonstrates the contrary for isogeometric analysis. The rapid convergence of the quadratic element is demonstrated for the NUMISHEET S-rail benchmark metal stamping problem. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1367 / 1378
页数:12
相关论文
共 41 条
[1]   The role of continuity in residual-based variational multiscale modeling of turbulence [J].
Akkerman, I. ;
Bazilevs, Y. ;
Calo, V. M. ;
Hughes, T. J. R. ;
Hulshoff, S. .
COMPUTATIONAL MECHANICS, 2008, 41 (03) :371-378
[2]  
[Anonymous], 1965, The algebraic eigenvalue problem
[3]  
[Anonymous], CR13270 U WAL DEP CI
[4]   A fully "locking-free" isogeometric approach for plane linear elasticity problems: A stream function formulation [J].
Auricchio, F. ;
da Veiga, L. Beirao ;
Buffa, A. ;
Lovadina, C. ;
Reali, A. ;
Sangalli, G. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 197 (1-4) :160-172
[5]   ISOGEOMETRIC COLLOCATION METHODS [J].
Auricchio, F. ;
Da Veiga, L. Beirao ;
Hughes, T. J. R. ;
Reali, A. ;
Sangalli, G. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2010, 20 (11) :2075-2107
[6]   NURBS-based isogeometric analysis for the computation of flows about rotating components [J].
Bazilevs, Y. ;
Hughes, T. J. R. .
COMPUTATIONAL MECHANICS, 2008, 43 (01) :143-150
[7]   Isogeometric fluid-structure interaction: theory, algorithms, and computations [J].
Bazilevs, Y. ;
Calo, V. M. ;
Hughes, T. J. R. ;
Zhang, Y. .
COMPUTATIONAL MECHANICS, 2008, 43 (01) :3-37
[8]   Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows [J].
Bazilevs, Y. ;
Calo, V. M. ;
Cottrell, J. A. ;
Hughes, T. J. R. ;
Reali, A. ;
Scovazzi, G. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 197 (1-4) :173-201
[9]   Isogeometric fluid-structure interaction analysis with applications to arterial blood flow [J].
Bazilevs, Y. ;
Calo, V. M. ;
Zhang, Y. ;
Hughes, T. J. R. .
COMPUTATIONAL MECHANICS, 2006, 38 (4-5) :310-322
[10]   Isogeometric analysis using T-splines [J].
Bazilevs, Y. ;
Calo, V. M. ;
Cottrell, J. A. ;
Evans, J. A. ;
Hughes, T. J. R. ;
Lipton, S. ;
Scott, M. A. ;
Sederberg, T. W. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) :229-263