Disjunctive and conjunctive normal forms of pseudo-Boolean functions

被引:12
作者
Foldes, S [1 ]
Hammer, PL [1 ]
机构
[1] Rutgers State Univ, RUTCOR, Piscataway, NJ 08844 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0166-218X(00)00276-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
After showing that every pseudo-Boolean function (i.e. real-valued function with binary variables) can be represented by a disjunctive normal form (essentially the maximum of several weighted monomials), the concepts of implicants and of prime implicants are analyzed in the pseudo-Boolean context, and a consensus-type method is presented for finding all the prime implicants of a pseudo-Boolean function, in a similar way the concepts of conjunctive normal form, implicates and prime implicates, as well as the resolution method are examined in the case of pseudo-Boolean functions. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 24 条
[11]  
FOLDES S, 122000 RUTCOR RRR
[12]  
FOLDES S, DISJUNCTIVE ANALOGUE
[13]  
FOLDES S, 2000, J UNIVERS COMPUT SCI, V6, P97
[14]  
FRAENKEL AS, 1984, ANN DISCRETE MATH, V20, P137
[15]  
Gottschalk W.H., 1953, J SYMBOLIC LOGIC, V18, P193
[16]  
Halmos PR, 1963, Lectures on Boolean Algebras: Van Nostrand Mathematical Studies
[17]  
Hammer P.L., 1963, STUDII I CERCET RI M, V14, P359
[18]  
Horn A, 1951, J Symb Log, V16, P14, DOI [DOI 10.2307/2268661, 10.2307/2268661]
[19]   On Sugeno integral as an aggregation function [J].
Marichal, JL .
FUZZY SETS AND SYSTEMS, 2000, 114 (03) :347-365
[20]  
MARICHAL JL, 1998, IN PRESS J MATH PSYC