Metabolic control through the PGC-1 family of transcription coactivators

被引:1798
作者
Lin, JD [1 ]
Handschin, C
Spiegelman, BM
机构
[1] Harvard Univ, Sch Med, Dana Farber Canc Inst, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Dept Cell Biol, Boston, MA 02115 USA
关键词
D O I
10.1016/j.cmet.2005.05.004
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Many complex biological programs are controlled at the level of gene transcription by DNA binding transcription factors. Recent studies have revealed a novel mode of regulation by coactivator proteins, best illustrated by the PGC-1 family of coactivators. These factors are highly responsive to a variety of environmental cues, from temperature to nutritional status to physical activity, and they coordinately regulate metabolic pathways and biological processes in a tissue-specific manner. Notably, the PGC-1 coactivators play a critical role in the maintenance of glucose, lipid, and energy homeostasis and are likely involved in the pathogenic conditions such as obesity, diabetes, neurodegeneration, and cardiornyopathy. These actions also raise new opportunities for the development of novel therapeutics.
引用
收藏
页码:361 / 370
页数:10
相关论文
共 89 条
[1]   PGC-l-related coactivator, a novel, serum-inducible coactivator of nuclear respiratory factor 1-dependent transcription in mammalian cells [J].
Andersson, U ;
Scarpulla, RC .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (11) :3738-3749
[2]   Transcriptional coactivator PGC-1α controls the energy state and contractile function of cardiac muscle [J].
Arany, Z ;
He, HM ;
Lin, JD ;
Hoyer, K ;
Handschin, C ;
Toka, O ;
Ahmad, F ;
Matsui, T ;
Chin, S ;
Wu, PH ;
Rybkin, II ;
Shelton, JM ;
Manieri, M ;
Cinti, S ;
Schoen, FJ ;
Bassel-Duby, R ;
Rosenzweig, A ;
Ingwall, JS ;
Spiegelman, BM .
CELL METABOLISM, 2005, 1 (04) :259-271
[3]   Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1 [J].
Baar, K ;
Wende, AR ;
Jones, TE ;
Marison, M ;
Nolte, LA ;
Chen, M ;
Kelly, DP ;
Holloszy, JO .
FASEB JOURNAL, 2002, 16 (14) :1879-1886
[4]   Novel concepts in insulin regulation of hepatic gluconeogenesis [J].
Barthel, A ;
Schmoll, D .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2003, 285 (04) :E685-E692
[5]   Ligand-activated pregnane X receptor interferes with HNF-4 signaling by targeting a common coactivator PGC-1α -: Functional implications in hepatic cholesterol and glucose metabolism [J].
Bhalla, S ;
Ozalp, C ;
Fang, SS ;
Xiang, LJ ;
Kemper, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (43) :45139-45147
[6]   The Sir2 family of protein deacetylases [J].
Blander, G ;
Guarente, L .
ANNUAL REVIEW OF BIOCHEMISTRY, 2004, 73 :417-435
[7]   Glucocorticoid signaling is perturbed by the atypical orphan receptor and corepressor SHP [J].
Borgius, LJ ;
Steffensen, KR ;
Gustafsson, JÅ ;
Treuter, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (51) :49761-49766
[8]   The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor [J].
Brown, MS ;
Goldstein, JL .
CELL, 1997, 89 (03) :331-340
[9]   p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene [J].
Cao, WH ;
Daniel, KW ;
Robidoux, J ;
Puigserver, P ;
Medvedev, AV ;
Bai, X ;
Floering, LM ;
Spiegelman, BM ;
Collins, S .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (07) :3057-3067
[10]   REPLICATION AND TRANSCRIPTION OF VERTEBRATE MITOCHONDRIAL-DNA [J].
CLAYTON, DA .
ANNUAL REVIEW OF CELL BIOLOGY, 1991, 7 :453-478