Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling

被引:144
作者
Pouysségur, J [1 ]
Lenormand, P [1 ]
机构
[1] CNRS, Ctr Antoine Lacassagne, UMR 6543, Inst Signaling Dev Biol & Canc Res, F-06189 Nice, France
来源
EUROPEAN JOURNAL OF BIOCHEMISTRY | 2003年 / 270卷 / 16期
关键词
MAP kinases; MAPK-phosphatases; scaffolding proteins; nucleus; growth control; cell signalling;
D O I
10.1046/j.1432-1033.2003.03707.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The mitogen activated protein (MAP) kinase module: (Raf --> MEK --> ERKs) is central to the control of cell growth, cell differentiation and cell survival. The fidelity of signalling and the spatio-temporal activation are key determinants in generating precise biological responses. The fidelity is ensured by scaffold proteins - protein kinase 'insulators' - and by specific docking sites. The duration and the intensity of the response are in part controlled by the compartmentalization of the signalling molecules. Growth factors promote rapid nuclear translocation and persistent activation of p42/p44 MAP kinases, respectively and ERK2/ERK1, during the entire G1 period with an extinction during the S-phase. These features are exquisitely controlled by the temporal induction of the MAP kinase phosphatases, MKP1-3. MKP1 and 2 induction is strictly controlled by the activation of the MAP kinase module providing evidence for an auto-regulatory mechanism. This negative regulatory loop is further enhanced by the capacity of p42/p44 MAPK to phosphorylate MKP1 and 2. This action reduces the degradation rate of MKPs through the ubiquitin-proteasomal system. Whereas the two upstream kinases of the module (Raf and MEK) remain cytoplasmic, ERKs (anchored to MEK in the cytoplasm of resting cells) rapidly translocate to the nucleus upon mitogenic stimulation. This latter process is rapid, reversible and controlled by the strict activation of the MAPK cascade. Following long-term MAPK stimulation, p42/p44 MAPKs progressively accumulate in the nucleus in an inactive form. Therefore we propose that the nucleus represents a site for ERK action, sequestration and signal termination. With the generation of knockdown mice for each of the ERK isoforms, we will illustrate that besides controlling cell proliferation the ERK cascade also controls cell differentiation and cell behaviour.
引用
收藏
页码:3291 / 3299
页数:9
相关论文
共 65 条
[1]   Two co-existing mechanisms for nuclear import of MAP kinase: passive diffusion of a monomer and active transport of a dimer [J].
Adachi, M ;
Fukuda, M ;
Nishida, E .
EMBO JOURNAL, 1999, 18 (19) :5347-5358
[2]   Nuclear export of MAP kinase (ERK) involves a MAP kinase kinase (MEK)-dependent active transport mechanism [J].
Adachi, M ;
Fukuda, M ;
Nishida, E .
JOURNAL OF CELL BIOLOGY, 2000, 148 (05) :849-856
[3]   INACTIVATION OF P42 MAP KINASE BY PROTEIN PHOSPHATASE 2A AND A PROTEIN-TYROSINE-PHOSPHATASE, BUT NOT CL100, IN VARIOUS CELL-LINES [J].
ALESSI, DR ;
GOMEZ, N ;
MOORHEAD, C ;
LEWIS, T ;
KEYSE, SM ;
COHEN, P .
CURRENT BIOLOGY, 1995, 5 (03) :283-295
[4]   A conserved motif at the amino termini of MEKs might mediate high-affinity interaction with the cognate MAPKs [J].
Bardwell, L ;
Thorner, J .
TRENDS IN BIOCHEMICAL SCIENCES, 1996, 21 (10) :373-374
[5]   The dual specificity mitogen-activated protein kinase phosphatase-1 and -2 are induced by the p42/p44(MAPK) cascade [J].
Brondello, JM ;
Brunet, A ;
Pouyssegur, J ;
McKenzie, FR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (02) :1368-1376
[6]   Reduced MAP kinase phosphatase-1 degradation after p42/p44MAPK-dependent phosphorylation [J].
Brondello, JM ;
Pouysségur, J ;
McKenzie, FR .
SCIENCE, 1999, 286 (5449) :2514-2517
[7]   Nuclear translocation of p42/p44 mitogen-activated protein kinase is required for growth factor-induced gene expression and cell cycle entry [J].
Brunet, A ;
Roux, D ;
Lenormand, P ;
Dowd, S ;
Keyse, S ;
Pouysségur, J .
EMBO JOURNAL, 1999, 18 (03) :664-674
[8]   Catalytic activation of the phosphatase MKP-3 by ERK2 mitogen-activated protein kinase [J].
Camps, M ;
Nichols, A ;
Gillieron, C ;
Antonsson, B ;
Muda, M ;
Chabert, C ;
Boschert, U ;
Arkinstall, S .
SCIENCE, 1998, 280 (5367) :1262-1265
[9]   Dual specificity phosphatases: a gene family for control of MAP kinase function [J].
Camps, M ;
Nichols, A ;
Arkinstall, S .
FASEB JOURNAL, 2000, 14 (01) :6-16
[10]  
Dorfman K, 1996, ONCOGENE, V13, P925