Escherichia coli HU protein is a major component of the bacterial nucleoid. HU stabilizes higher order nucleoprotein complexes and belongs to a family of DNA architectural proteins. Here, we report that HU is required for efficient expression of the sigma S subunit of RNA polymerase. This rpoS-encoded alternative sigmaS factor induces a number of genes implicated in cell survival in stationary phase and in multiple stress resistance. By analysis of rpoS-lacZ fusions and by pulse-chase experiments, we show that the efficiency of rpoS translation is reduced in cells lacking HU, whereas neither rpoS transcription nor protein stability is affected by HU. Gel mobility shift assays show that HU is able to bind specifically an RNA fragment containing the translational initiation region of rpoS mRNA 1000-fold more strongly than double-stranded DNA. Together with the in vivo data, this finding strongly suggests that, by binding to rpoS mRNA, HU directly stimulates rpoS translation. We demonstrate here that HU, an abundant DNA-binding, histone-like protein, is able specifically to recognize an RNA molecule and therefore play a role in post-transcriptional regulation.