Existence of blow-up solutions in the energy space for the critical generalized KdV equation

被引:122
作者
Merle, F [1 ]
机构
[1] Univ Cergy Pontoise, Dept Math, F-95302 Cergy Pontoise, France
关键词
blow-up; critical; KdV;
D O I
10.1090/S0894-0347-01-00369-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:555 / 578
页数:24
相关论文
共 28 条
  • [1] CONSERVATIVE, HIGH-ORDER NUMERICAL SCHEMES FOR THE GENERALIZED KORTEWEG-DE VRIES EQUATION
    BONA, JL
    DOUGALIS, VA
    KARAKASHIAN, OA
    MCKINNEY, WR
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1995, 351 (1695): : 107 - 164
  • [2] STABILITY AND INSTABILITY OF SOLITARY WAVES OF KORTEWEG-DEVRIES TYPE
    BONA, JL
    SOUGANIDIS, PE
    STRAUSS, WA
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1987, 411 (1841) : 395 - 412
  • [3] BOURGAIN J, 1994, P INT C MATH, V1, P31
  • [4] Bourgain J., 1993, GEOM FUNCT ANAL, V3, P209
  • [5] ORBITAL STABILITY OF STANDING WAVES FOR SOME NON-LINEAR SCHRODING EQUATIONS
    CAZENAVE, T
    LIONS, PL
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (04) : 549 - 561
  • [6] SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE
    GIDAS, B
    NI, WM
    NIRENBERG, L
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) : 209 - 243
  • [7] Gidas B., 1981, Communs partial diff. Eqns, V6, P883, DOI 10.1080/03605308108820196
  • [8] UNIQUENESS OF SOLUTIONS FOR THE GENERALIZED KORTEWEG-DEVRIES EQUATION
    GINIBRE, J
    TSUTSUMI, Y
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (06) : 1388 - 1425
  • [9] STABILITY THEORY OF SOLITARY WAVES IN THE PRESENCE OF SYMMETRY .1.
    GRILLAKIS, M
    SHATAH, J
    STRAUSS, W
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1987, 74 (01) : 160 - 197
  • [10] Kato T., 1983, ADV MATH S, V8, P93