Existence of blow-up solutions in the energy space for the critical generalized KdV equation

被引:122
作者
Merle, F [1 ]
机构
[1] Univ Cergy Pontoise, Dept Math, F-95302 Cergy Pontoise, France
关键词
blow-up; critical; KdV;
D O I
10.1090/S0894-0347-01-00369-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:555 / 578
页数:24
相关论文
共 28 条
[21]   ASYMPTOTIC STABILITY OF SOLITARY WAVES [J].
PEGO, RL ;
WEINSTEIN, MI .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 164 (02) :305-349
[22]  
SCHECHTER M, 1986, SPECTRA PARTIAL DIFF
[23]   Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations [J].
Soffer, A ;
Weinstein, MI .
INVENTIONES MATHEMATICAE, 1999, 136 (01) :9-74
[24]  
Titchmarsh E, 1946, EIGENFUNCTION EXPANS
[25]   LYAPUNOV STABILITY OF GROUND-STATES OF NONLINEAR DISPERSIVE EVOLUTION-EQUATIONS [J].
WEINSTEIN, MI .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (01) :51-67
[26]   MODULATIONAL STABILITY OF GROUND-STATES OF NONLINEAR SCHRODINGER-EQUATIONS [J].
WEINSTEIN, MI .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1985, 16 (03) :472-491
[27]   NON-LINEAR SCHRODINGER-EQUATIONS AND SHARP INTERPOLATION ESTIMATES [J].
WEINSTEIN, MI .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 87 (04) :567-576
[28]  
ZAKHAROV VE, 1972, SOV PHYS JETP-USSR, V34, P62