The isolation and characterization of cytochrome c nitrite reductase subunits (NrfA and NrfH) from Desulfovibrio desulfuricans ATCC 27774 -: Re-evaluation of the spectroscopic data and redox properties

被引:47
作者
Almeida, MG
Macieira, S
Gonçalves, LL
Huber, R
Cunha, CA
Romao, MJ
Costa, C
Lampreia, J
Moura, JJG
Moura, I [1 ]
机构
[1] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Quim, REQUIMTE,CQFB, P-2829516 Monte De Caparica, Portugal
[2] Max Planck Inst Biochem, Abt Strukturforsch, D-82152 Martinsried, Germany
来源
EUROPEAN JOURNAL OF BIOCHEMISTRY | 2003年 / 270卷 / 19期
关键词
nitrite reductase subunits; c-type hemes; EPR; Mossbauer; redox potentials;
D O I
10.1046/j.1432-1033.2003.03772.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The cytochrome c nitrite reductase is isolated from the membranes of the sulfate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774 as a heterooligomeric complex composed by two subunits (61 kDa and 19 kDa) containing c-type hemes, encoded by the genes nrfA and nrfH, respectively. The extracted complex has in average a 2NrfA:1NrfH composition. The separation of ccNiR subunits from one another is accomplished by gel filtration chromatography in the presence of SDS. The amino-acid sequence and biochemical subunits characterization show that NrfA contains five hemes and NrfH four hemes. These considerations enabled the revision of a vast amount of existing spectroscopic data on the NrfHA complex that was not originally well interpreted due to the lack of knowledge on the heme content and the oligomeric enzyme status. Based on EPR and Mossbauer parameters and their correlation to structural information recently obtained from X-ray crystallography on the NrfA structure [Cunha, C. A., Macieira, S., Dias, J.M., Almeida, M.G., Goncalves, L. M. L., Costa, C., Lampreia, J., Huber, R., Moura, J. J. G., Moura, I. & Romano, M. (2003) J. Biol. Chem. 278, 17455-17465], we propose the full assignment of midpoint reduction potentials values to the individual hemes. NrfA contains the high-spin catalytic site (-80 mV) as well as a quite unusual high reduction potential (+150 mV)/low-spin bis-His coordinated heme, considered to be the site where electrons enter. In addition, the reassessment of the spectroscopic data allowed the first partial spectroscopic characterization of the NrfH subunit. The four NrfH hemes are all in a low-spin state (S = 1/2). One of them has a g(max) at 3.55, characteristic of bis-histidinyl iron ligands in a noncoplanar arrangement, and has a positive reduction potential.
引用
收藏
页码:3904 / 3915
页数:12
相关论文
共 57 条
[51]   The tetraheme cytochrome c NrfH is required to anchor the cytochrome c nitrite reductase (NrfA) in the membrane of Wolinella succinogenes [J].
Simon, J ;
Pisa, R ;
Stein, T ;
Eichler, R ;
Klimmek, O ;
Gross, R .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2001, 268 (22) :5776-5782
[52]  
Sonnhammer E L, 1998, Proc Int Conf Intell Syst Mol Biol, V6, P175
[53]   Effects of ligation and folding on reduction potentials of heme proteins [J].
Tezcan, FA ;
Winkler, JR ;
Gray, HB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (51) :13383-13388
[54]   CLUSTAL-W - IMPROVING THE SENSITIVITY OF PROGRESSIVE MULTIPLE SEQUENCE ALIGNMENT THROUGH SEQUENCE WEIGHTING, POSITION-SPECIFIC GAP PENALTIES AND WEIGHT MATRIX CHOICE [J].
THOMPSON, JD ;
HIGGINS, DG ;
GIBSON, TJ .
NUCLEIC ACIDS RESEARCH, 1994, 22 (22) :4673-4680
[55]  
WALKER F, 1986, PERITON DIALYSIS INT, V6, P108
[56]  
WESTENBERG DJ, 1993, J BIOL CHEM, V268, P815
[57]   Cell biology and molecular basis of denitrification [J].
Zumft, WG .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 1997, 61 (04) :533-+