Synthesis and characterisation of sulfated amphiphilic α-, β- and γ-cyclodextrins:: application to the complexation of acyclovir

被引:32
作者
Dubes, A
Degobert, G
Fessi, H
Parrot-Lopez, H [1 ]
机构
[1] Lab Methodol Synth & Mol Bioactives, F-69622 Villeurbanne, France
[2] Univ Lyon 1, CPE Lyon, CNRS, Lab Automat & Genie Procedes,UMR 5007, F-69622 Villeurbanne, France
关键词
amphiphilic cyclodextrins; sulfated cyclodextrins; acyclovir; inclusion complexes; UV characterisation; electrospray ionisation mass spectrometry;
D O I
10.1016/S0008-6215(03)00356-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The synthesis of sulfated amphiphilic alpha-, beta- and gamma-cyclodextrins was achieved according to the standard protection-deprotection procedure. The formation of inclusion complexes between the amphiphilic alpha-, beta- and gamma-cyclodextrins and an antiviral molecule, acyclovir (ACV) was investigated by UV-visible spectroscopy (UV-Vis) and electrospray ionisation mass spectrometry (ESIMS). UV-Vis spectroscopy allowed determination of the stoichiometry and stability constants of complexes, whereas ESIMS, a soft ionisation technique, allowed the detection of the inclusion complexes. The results showed that the non-sulfated amphiphilic cyclodextrins exhibit a 1:2 stoichiometry with acyclovir, while sulfated amphiphilic cyclodextrins, except gamma-cyclodextrin, exhibit a 1:1 stoichiometry indicating the loss of one interaction site. Non-covalent interactions between acyclovir and non-sulfated amphiphilic cyclodextrins appear to take place both in the cavity of the cyclodextrin and inside the hydrophobic zone generated by alkanoyl chains. In contrast, in the case of sulfated amphiphilic cyclodextrins, the interactions appear to involve only the hydrophobic region of the alkanoyl chains. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2185 / 2193
页数:9
相关论文
共 32 条
[1]  
Atwood J.L., 1996, COMPREHENSIVE SUPRAM
[2]   Micellization of hydrophobically modified cyclodextrins.: 1.: Micellar structure [J].
Auzély-Velty, R ;
Djedaïni-Pilard, F ;
Désert, S ;
Perly, B ;
Zemb, T .
LANGMUIR, 2000, 16 (08) :3727-3734
[3]   BACTERIAL TOXICITY OF CYCLODEXTRINS - LUMINOUS ESCHERICHIA-COLI AS A MODEL [J].
BAR, R ;
ULITZUR, S .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1994, 41 (05) :574-577
[4]   Interfacial interactions between amphiphilic cyclodextrins and physiologically relevant cations [J].
Dubes, A ;
Parrot-Lopez, H ;
Shahgaldian, P ;
Coleman, AW .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2003, 259 (01) :103-111
[5]   An efficient regio-specific synthetic route to multiply substituted acyl-sulphated β-cyclodextrins [J].
Dubes, A ;
Bouchu, D ;
Lamartine, R ;
Parrot-Lopez, H .
TETRAHEDRON LETTERS, 2001, 42 (52) :9147-9151
[6]   CONTROL OF ANGIOGENESIS WITH SYNTHETIC HEPARIN SUBSTITUTES [J].
FOLKMAN, J ;
WEISZ, PB ;
JOULLIE, MM ;
LI, WW ;
EWING, WR .
SCIENCE, 1989, 243 (4897) :1490-1493
[7]   Characterization and in-vivo ocular absorption of liposome-encapsulated acyclovir [J].
Fresta, M ;
Panico, AM ;
Bucolo, C ;
Giannavola, C ;
Puglisi, G .
JOURNAL OF PHARMACY AND PHARMACOLOGY, 1999, 51 (05) :565-576
[9]   Influence of chemical structure of amphiphilic β-cyclodextrins on their ability to form stable nanoparticles [J].
Gèze, A ;
Aous, S ;
Baussanne, I ;
Putaux, JL ;
Defaye, J ;
Wouessidjewe, D .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2002, 242 (1-2) :301-305
[10]   4-DIALKYLAMINOPYRIDINES AS ACYLATION CATALYSTS .4. 4-DIALKYLAMINOPYRIDINES AS HIGHLY ACTIVE ACYLATION CATALYSTS [J].
HOFLE, G ;
STEGLICH, W ;
VORBRUGGEN, H .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH, 1978, 17 (08) :569-&