Hamilton-Jacobi-Isaacs formulation for constrained input nonlinear systems

被引:12
作者
Abu-Khalaf, M [1 ]
Lewis, FL [1 ]
Huang, J [1 ]
机构
[1] Univ Texas, Automat & Robot Res Inst, Ft Worth, TX 76118 USA
来源
2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5 | 2004年
关键词
D O I
10.1109/CDC.2004.1429604
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider the H-infinity nonlinear state feedback control of constrained input systems. The input constraints are encoded via a quasi-norm that enables applying quasi L-2-gain analysis of the corresponding closed-loop nonlinear system. The quasi-norm allows using nonquadratic supply rates along with the theory of dissipative systems to formulate the robust optimal control problem for constrained input systems using the Hamilton-Jacobi-Isaacs (HJI) equation. Hence, the constrained optimal control problem is formulated as a closely related unconstrained problem. The saddle point strategy corresponding to the related zero-sum differential game is derived, and shown to be unique. Finally, an iterative solution technique based on the game theoretic interpretation of the HJI equation is presented. This iterative approach allows a deeper insight on the relation between the attenuation gain and the region of asymptotic stability of the H-infinity controller for constrained input systems.
引用
收藏
页码:5034 / 5040
页数:7
相关论文
共 15 条
[1]  
[Anonymous], 1997, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations
[2]  
Basar T., 1995, OPTIMAL CONTROL RELA
[3]   Successive Galerkin approximation algorithms for nonlinear optimal and robust control [J].
Beard, RW ;
McLain, TW .
INTERNATIONAL JOURNAL OF CONTROL, 1998, 71 (05) :717-743
[4]   STATE-SPACE SOLUTIONS TO STANDARD H-2 AND H-INFINITY CONTROL-PROBLEMS [J].
DOYLE, JC ;
GLOVER, K ;
KHARGONEKAR, PP ;
FRANCIS, BA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (08) :831-847
[5]   NUMERICAL APPROACH TO COMPUTING NONLINEAR H-INFINITY CONTROL LAWS [J].
HUANG, J ;
LIN, CF .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1995, 18 (05) :989-994
[6]   DISTURBANCE ATTENUATION AND H-INFINITY-CONTROL VIA MEASUREMENT FEEDBACK IN NONLINEAR-SYSTEMS [J].
ISIDORI, A ;
ASTOLFI, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (09) :1283-1293
[7]  
Khalil H. K., 2001, Nonlinear Systems, V3rd
[8]  
Kirk D. E., 2004, OPTIMAL CONTROL THEO
[9]  
Knobloch H. W., 1993, Topics in Control Theory
[10]  
Lyshevski SE, 2001, P AMER CONTR CONF, P2400, DOI 10.1109/ACC.2001.946112