Hamilton-Jacobi-Isaacs formulation for constrained input nonlinear systems
被引:12
作者:
Abu-Khalaf, M
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas, Automat & Robot Res Inst, Ft Worth, TX 76118 USAUniv Texas, Automat & Robot Res Inst, Ft Worth, TX 76118 USA
Abu-Khalaf, M
[1
]
Lewis, FL
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas, Automat & Robot Res Inst, Ft Worth, TX 76118 USAUniv Texas, Automat & Robot Res Inst, Ft Worth, TX 76118 USA
Lewis, FL
[1
]
Huang, J
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas, Automat & Robot Res Inst, Ft Worth, TX 76118 USAUniv Texas, Automat & Robot Res Inst, Ft Worth, TX 76118 USA
Huang, J
[1
]
机构:
[1] Univ Texas, Automat & Robot Res Inst, Ft Worth, TX 76118 USA
来源:
2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5
|
2004年
关键词:
D O I:
10.1109/CDC.2004.1429604
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
In this paper, we consider the H-infinity nonlinear state feedback control of constrained input systems. The input constraints are encoded via a quasi-norm that enables applying quasi L-2-gain analysis of the corresponding closed-loop nonlinear system. The quasi-norm allows using nonquadratic supply rates along with the theory of dissipative systems to formulate the robust optimal control problem for constrained input systems using the Hamilton-Jacobi-Isaacs (HJI) equation. Hence, the constrained optimal control problem is formulated as a closely related unconstrained problem. The saddle point strategy corresponding to the related zero-sum differential game is derived, and shown to be unique. Finally, an iterative solution technique based on the game theoretic interpretation of the HJI equation is presented. This iterative approach allows a deeper insight on the relation between the attenuation gain and the region of asymptotic stability of the H-infinity controller for constrained input systems.