Structures of thermophilic and mesophilic adenylate kinases from the genus Methanococcus

被引:59
作者
Criswell, AR
Bae, E
Stec, B
Konisky, J
Phillips, GN [1 ]
机构
[1] Rice Univ, Dept Biochem & Cell Biol, Houston, TX 77005 USA
[2] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA
关键词
adenylate kinase; Methanococcus; phosphate-binding loop; protein thermostability; X-ray crystallography;
D O I
10.1016/S0022-2836(03)00655-7
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The crystal structures of adenylate kinases from the thermophile Methanococcus thermolithotrophicus and the mesophile Methanococcus voltae have been solved to resolutions of 2.8 Angstrom and 2.5 Angstrom, respectively. The structures of the enzymes are similar to that of the adenylate kinase from archaeal Sulfolobus acidocaldarius in many respects such as the extended central beta-sheets, the short LID domain, and the trimeric state. The analysis of unligated and AMP-bound subunits of M. voltae suggests that movements of two mobile domains are not independent of each other. The methanococcal structures are examined with respect to their lack of the "invariant" Lys residue within the phosphate-binding loop, and two Arg residues in the LID domain are proposed as substituting residues based on their conservation among archaeal adenylate kinases and mobility within the structures. Since S. acidocaldarius adenylate kinase has the invariant Lys residue as well as the two Arg residues, its phosphate-binding loop is examined and compared with those of other adenylate kinases. On the basis of the comparison and other available biochemical data, the unusual conformation of the Lys residue in S. acidocaldarius adenylate kinase is explained. Despite possessing 78% sequence identity, the methanococcal enzymes exhibit significantly different thermal stabilities. To study the determinants of thermostability, several structural features including salt-links, hydrogen bonds, packing density, surface to volume ratio and buried surface area are compared between the enzymes. From their difference in apolar buried surface area, hydrophobic interaction is proposed to be a basis for the disparate thermostabilities, and the corresponding free energy difference is also estimated. Results of previous mutational studies are interpreted in terms of the crystal structures, and support the importance of hydrophobic interactions in thermostability. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1087 / 1099
页数:13
相关论文
共 59 条
[1]   HIGH-RESOLUTION STRUCTURES OF ADENYLATE KINASE FROM YEAST LIGATED WITH INHIBITOR AP(5)A, SHOWING THE PATHWAY OF PHOSPHORYL TRANSFER [J].
ABELE, U ;
SCHULZ, GE .
PROTEIN SCIENCE, 1995, 4 (07) :1262-1271
[2]   Free energy of amide hydrogen bond formation in vacuum, in water, and in liquid alkane solution [J].
BenTal, N ;
Sitkoff, D ;
Topol, IA ;
Yang, AS ;
Burt, SK ;
Honig, B .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (03) :450-457
[3]   THE CLOSED CONFORMATION OF A HIGHLY FLEXIBLE PROTEIN - THE STRUCTURE OF ESCHERICHIA-COLI ADENYLATE KINASE WITH BOUND AMP AND AMPPNP [J].
BERRY, MB ;
MEADOR, B ;
BILDERBACK, T ;
LIANG, P ;
GLASER, M ;
PHILLIPS, GN .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1994, 19 (03) :183-198
[4]  
Berry MB, 1998, PROTEIN-STRUCT FUNCT, V32, P275
[5]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[6]   Human glutathione transferase A4-4 crystal structures and mutagenesis reveal the basis of high catalytic efficiency with toxic lipid peroxidation products [J].
Bruns, CM ;
Hubatsch, I ;
Ridderström, M ;
Mannervik, B ;
Tainer, JA .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 288 (03) :427-439
[7]   Ribbons [J].
Carson, M .
MACROMOLECULAR CRYSTALLOGRAPHY, PT B, 1997, 277 :493-505
[8]   STRUCTURE OF A HYPERTHERMOPHILIC TUNGSTOPTERIN ENZYME, ALDEHYDE FERREDOXIN OXIDOREDUCTASE [J].
CHAN, MK ;
MUKUND, S ;
KLETZIN, A ;
ADAMS, MWW ;
REES, DC .
SCIENCE, 1995, 267 (5203) :1463-1469
[9]   HYDROPHOBICITY SCALES AND COMPUTATIONAL TECHNIQUES FOR DETECTING AMPHIPATHIC STRUCTURES IN PROTEINS [J].
CORNETTE, JL ;
CEASE, KB ;
MARGALIT, H ;
SPOUGE, JL ;
BERZOFSKY, JA ;
DELISI, C .
JOURNAL OF MOLECULAR BIOLOGY, 1987, 195 (03) :659-685
[10]   Modeling unfolded states of proteins and peptides .2. Backbone solvent accessibility [J].
Creamer, TP ;
Srinivasan, R ;
Rose, GD .
BIOCHEMISTRY, 1997, 36 (10) :2832-2835