Predicting the cooling time for irregular shaped food products

被引:11
作者
Carroll, N
Mohtar, R
Segerlind, LJ
机构
[1] MICHIGAN STATE UNIV,DEPT AGR ENGN,E LANSING,MI 48824
[2] PURDUE UNIV,DEPT YOUTH 4H,W LAFAYETTE,IN 47907
[3] PURDUE UNIV,DEPT AGR & BIOL ENGN,W LAFAYETTE,IN 47907
关键词
D O I
10.1111/j.1745-4530.1996.tb00401.x
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A new method for calculating the cooling time for fresh fruits and vegetables and processed foods is presented. The method uses the truncated analytical solution of the governing partial differential equation to define a cooling curve with two parameters. One parameter is the lowest eigenvalue for the product. The second parameter is a constant multiplier similar to the one that occurs in the analytical solution. The lowest eigenvalue is evaluated using a finite element analysis. The multiplying constant is evaluated using a finite element solution in time. Cooling curves for a Rome apple and a Bartlett pear are presented and discussed.
引用
收藏
页码:385 / 401
页数:17
相关论文
共 16 条
[1]  
Bathe K. J., 1976, NUMERICAL METHODS FI
[2]  
BAZAN T, 1989, 896559 ASAE
[3]  
de Baerdemaeker J., 1977, J FOOD PROCESS ENG, V1, P37
[4]  
FRASER H, 1992, 926016 ASAE
[5]  
Gear C. W., 1971, NUMERICAL INITIAL VA
[6]   HEAT-TRANSFER AND MOISTURE LOSS OF SPHERICAL FRESH PRODUCE [J].
HAYAKAWA, K ;
SUCCAR, J .
JOURNAL OF FOOD SCIENCE, 1982, 47 (02) :596-605
[7]  
HELDMAN DR, 1977, FOOD PROCESS ENG
[8]  
Hughes TJR., 1987, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
[9]  
LIENHARD JH, 1981, HEAT TRANSFER BOOK
[10]  
MISRA RN, 1979, T ASAE, V22, P944, DOI 10.13031/2013.35131