Stability under contamination of robust regression estimators based on differences of residuals

被引:6
作者
Berrendero, JR [1 ]
Romo, J [1 ]
机构
[1] Univ Carlos III Madrid, Dept Estadist & Econometria, E-28903 Getafe, Spain
关键词
robust regression; maxbias curve; S-estimators; GS-estimators; minimax bias;
D O I
10.1016/S0378-3758(97)00169-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A reasonable approach to robust regression estimation is minimizing a robust scale estimator of the pairwise differences of residuals. We introduce a large class of estimators based on this strategy extending ideas of Yohai and Zamar (Am. Statist. (1993) 1824-1842) and Croux et al. (J. Am. Statist. Assoc. (1994) 1271-1281). The asymptotic robustness properties of the estimators in this class are addressed using the maxbias curve. We provide a general principle to compute this curve and present explicit formulae for several particular cases including generalized versions of S-, R- and tau-estimators. Finally, the most stable estimator in the class, that is, the estimator with the minimum maxbias curve, is shown to be the set of coefficients that minimizes an appropriate quantile of the distribution of the absolute pairwise differences of residuals. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:149 / 165
页数:17
相关论文
共 13 条
[11]  
STROMBERG D, 1996, UNPUB ROBUST REGRESS
[12]  
YOHAI VJ, 1988, J AM STAT ASSOC, V83, P406
[13]   A MINIMAX-BIAS PROPERTY OF THE LEAST ALPHA-QUANTILE ESTIMATES [J].
YOHAI, VJ ;
ZAMAR, RH .
ANNALS OF STATISTICS, 1993, 21 (04) :1824-1842