Direct climate effects of perennial bioenergy crops in the United States

被引:177
作者
Georgescu, Matei [1 ,2 ]
Lobell, David B. [3 ,4 ]
Field, Christopher B. [5 ]
机构
[1] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
[2] Arizona State Univ, Ctr Environm Fluid Dynam, Tempe, AZ 85287 USA
[3] Stanford Univ, Dept Environm Earth Syst Sci, Stanford, CA 94305 USA
[4] Stanford Univ, Program Food Secur & Environm, Stanford, CA 94305 USA
[5] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
regional climate modeling; agriculture; landscape modification; CO2; LAND-USE; BIOFUELS; IMPACTS; GRASSLAND; EMISSIONS; MIDWEST; SYSTEM; ALBEDO; COSTS;
D O I
10.1073/pnas.1008779108
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Biomass-derived energy offers the potential to increase energy security while mitigating anthropogenic climate change, but a successful path toward increased production requires a thorough accounting of costs and benefits. Until recently, the efficacy of biomass-derived energy has focused primarily on biogeochemical consequences. Here we show that the biogeophysical effects that result from hypothetical conversion of annual to perennial bioenergy crops across the central United States impart a significant local to regional cooling with considerable implications for the reservoir of stored soil water. This cooling effect is related mainly to local increases in transpiration, but also to higher albedo. The reduction in radiative forcing from albedo alone is equivalent to a carbon emissions reduction of 78 t C ha(-1), which is six times larger than the annual biogeochemical effects that arise from offsetting fossil fuel use. Thus, in the near-term, the biogeophysical effects are an important aspect of climate impacts of biofuels, even at the global scale. Locally, the simulated cooling is sufficiently large to partially offset projected warming due to increasing greenhouse gases over the next few decades. These results demonstrate that a thorough evaluation of costs and benefits of bioenergy-related land-use change must include potential impacts on the surface energy and water balance to comprehensively address important concerns for local, regional, and global climate change.
引用
收藏
页码:4307 / 4312
页数:6
相关论文
共 41 条
[1]   Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems [J].
Adler, Paul R. ;
Del Grosso, Stephen J. ;
Parton, William J. .
ECOLOGICAL APPLICATIONS, 2007, 17 (03) :675-691
[2]   Offset of the potential carbon sink from boreal forestation by decreases in surface albedo [J].
Betts, RA .
NATURE, 2000, 408 (6809) :187-190
[3]   Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks [J].
Canadell, Josep G. ;
Le Quéré, Corinne ;
Raupach, Michael R. ;
Field, Christopher B. ;
Buitenhuis, Erik T. ;
Ciais, Philippe ;
Conway, Thomas J. ;
Gillett, Nathan P. ;
Houghton, R. A. ;
Marland, Gregg .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (47) :18866-18870
[4]  
Chen F, 2001, MON WEATHER REV, V129, P569, DOI 10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO
[5]  
2
[6]   Mapping global land surface albedo from NOAA AVHRR [J].
Csiszar, I ;
Gutman, G .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1999, 104 (D6) :6215-6228
[7]   Life-cycle analysis and the ecology of biofuels [J].
Davis, Sarah C. ;
Anderson-Teixeira, Kristina J. ;
DeLucia, Evan H. .
TRENDS IN PLANT SCIENCE, 2009, 14 (03) :140-146
[8]   Impacts of biofuels on climate change, water use, and land use [J].
Delucchi, Mark A. .
YEAR IN ECOLOGY AND CONSERVATION BIOLOGY 2010, 2010, 1195 :28-45
[9]   More Productive Than Maize in the Midwest: How Does Miscanthus Do It? [J].
Dohleman, Frank G. ;
Long, Stephen P. .
PLANT PHYSIOLOGY, 2009, 150 (04) :2104-2115
[10]   Land clearing and the biofuel carbon debt [J].
Fargione, Joseph ;
Hill, Jason ;
Tilman, David ;
Polasky, Stephen ;
Hawthorne, Peter .
SCIENCE, 2008, 319 (5867) :1235-1238