Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures

被引:86
作者
Bonse, J. [1 ]
Rosenfeld, A. [2 ]
Krueger, J. [1 ]
机构
[1] BAM Bundesanstalt Mat Forsch & Prufung, D-12205 Berlin, Germany
[2] Max Born Inst, D-12489 Berlin, Germany
关键词
Femtosecond laser ablation; Laser-induced periodic surface structures (LIPSS); Optical properties; Surface plasmon polaritons; Semiconductors; Silicon; SILICON; SEMICONDUCTORS; ABLATION; GENERATION; MODES; SI;
D O I
10.1016/j.apsusc.2010.11.059
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of silicon wafer surfaces by linearly polarized Ti: sapphire femtosecond laser pulses (pulse duration 130fs, central wavelength 800 nm) is studied experimentally and theoretically. In the experiments, so-called low-spatial frequency LIPSS (LSFL) were found with periods smaller than the laser wavelength and an orientation perpendicular to the polarization. The experimental results are analyzed by means of a new theoretical approach, which combines the widely accepted LIPSS theory of Sipe et al. with a Drude model, in order to account for transient (intra-pulse) changes of the optical properties of the irradiated materials. It is found that the LSFL formation is caused by the excitation of surface plasmon polaritons, SPPs, once the initially semiconducting material turns to a metallic state upon formation of a dense free-electron-plasma in the material and the subsequent interference between its electrical field with that of the incident laser beam resulting in a spatially modulated energy deposition at the surface. Moreover, the influence of the laser-excited carrier density and the role of the feedback upon the multi-pulse irradiation and its relation to the excitation of SPP in a grating-like surface structure is discussed. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:5420 / 5423
页数:4
相关论文
共 24 条
[1]   Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses [J].
Bonse, J ;
Munz, M ;
Sturm, H .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (01)
[2]   Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy [J].
Bonse, J ;
Brzezinka, KW ;
Meixner, AJ .
APPLIED SURFACE SCIENCE, 2004, 221 (1-4) :215-230
[3]   Femtosecond laser ablation of silicon-modification thresholds and morphology [J].
Bonse, J ;
Baudach, S ;
Krüger, J ;
Kautek, W ;
Lenzner, M .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2002, 74 (01) :19-25
[4]   Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air [J].
Bonse, J ;
Sturm, H ;
Schmidt, D ;
Kautek, W .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2000, 71 (06) :657-665
[5]   Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon [J].
Bonse, Joern ;
Krueger, Joerg .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (03)
[6]   On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses [J].
Bonse, Joern ;
Rosenfeld, Arkadi ;
Krueger, Joerg .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (10)
[7]   Sub-damage-threshold femtosecond laser ablation from crystalline Si: surface nanostructures and phase transformation [J].
Costache, F ;
Kouteva-Arguirova, S ;
Reif, J .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2004, 79 (4-6) :1429-1432
[8]   Sub-wavelength surface structures on silicon irradiated by femtosecond laser pulses at 1300 and 2100 nm wavelengths [J].
Crawford, T. H. R. ;
Haugen, H. K. .
APPLIED SURFACE SCIENCE, 2007, 253 (11) :4970-4977
[9]   Femtosecond laser interaction with silicon under water confinement [J].
Daminelli, G ;
Krüger, J ;
Kautek, W .
THIN SOLID FILMS, 2004, 467 (1-2) :334-341
[10]  
Derrien TJ, 2010, J OPTOELECTRON ADV M, V12, P610