Asymptotics for L(2) minimal blow-up solutions of critical nonlinear Schrodinger equation

被引:15
作者
Merle, F
机构
[1] Universite de Cergy-Pontoise, Centre, de Mathematiques, Avenue du Parc 8,, Le Campus
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 1996年 / 13卷 / 05期
关键词
D O I
10.1016/S0294-1449(16)30114-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we describe the behavior of a sequence v(n) : R(N) --> C minimal in L(2) such that 1/2 integral \del(vn)\(2) -1/4/n+2 integral \v(n)\(4/N+2) less than or equal to E(0) and \v(n)\(H1) --> +infinity.
引用
收藏
页码:553 / 565
页数:13
相关论文
共 9 条
[1]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[2]   CLASS OF NON-LINEAR SCHRODINGER EQUATIONS .1. CAUCHY-PROBLEM, GENERAL-CASE [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 32 (01) :1-32
[3]  
KATO T, 1987, ANN I H POINCARE-PHY, V46, P113
[4]  
KWONG MK, 1989, ARCH RATION MECH AN, V105, P243
[5]   DETERMINATION OF BLOW-UP SOLUTIONS WITH MINIMAL MASS FOR NONLINEAR SCHRODINGER-EQUATIONS WITH CRITICAL POWER [J].
MERLE, F .
DUKE MATHEMATICAL JOURNAL, 1993, 69 (02) :427-454
[6]  
MERLE F, NONEXISTENCE MINIMAL
[7]   EXISTENCE OF SOLITARY WAVES IN HIGHER DIMENSIONS [J].
STRAUSS, WA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 55 (02) :149-162
[8]   MODULATIONAL STABILITY OF GROUND-STATES OF NONLINEAR SCHRODINGER-EQUATIONS [J].
WEINSTEIN, MI .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1985, 16 (03) :472-491
[9]   NON-LINEAR SCHRODINGER-EQUATIONS AND SHARP INTERPOLATION ESTIMATES [J].
WEINSTEIN, MI .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 87 (04) :567-576