Exact primitives for smallest enclosing ellipses

被引:6
作者
Gartner, B
Schonherr, S
机构
[1] Free Univ Berlin, Inst Informat, D-14195 Berlin, Germany
[2] Swiss Fed Inst Technol, Inst Theoret Informat, CH-8092 Zurich, Switzerland
关键词
Lowner-John ellipsoid; computational complexity; primitive operations; computational geometry;
D O I
10.1016/S0020-0190(98)00132-X
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The problem of finding the unique closed ellipsoid of smallest volume enclosing an n-point set P in d-space (known as the Lowner-John ellipsoid of P (John, 1948) is an instance of convex programming and can be solved by general methods in time O(n) if the dimension is fixed O Welzl, 1991; Matousek et al., 1992; Dyer, 1992; Adler and Shamir, 1993). The problem-specific parts of these methods are encapsulated in primitive operations that deal with subproblems of constant size. We derive explicit formulae for the primitive operations of Welzl's randomized method (Welzl, 1991) in dimension d = 2. Compared to previous ones (Silverman and Titterington, 1980; Post, 1982; Schonherr, 1994), these formulae are simpler and faster to evaluate, and they only contain rational expressions, allowing for an exact solution. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:33 / 38
页数:6
相关论文
共 18 条
  • [1] A RANDOMIZED SCHEME FOR SPEEDING-UP ALGORITHMS FOR LINEAR AND CONVEX-PROGRAMMING PROBLEMS WITH HIGH CONSTRAINTS-TO-VARIABLES RATIO
    ADLER, I
    SHAMIR, R
    [J]. MATHEMATICAL PROGRAMMING, 1993, 61 (01) : 39 - 52
  • [2] [Anonymous], [No title captured]
  • [3] Danzer L., 1957, ARCH MATH, V8, P214, DOI DOI 10.1007/BF01899996
  • [4] Dyer M., 1992, Proceedings of the Eighth Annual Symposium on Computational Geometry, P9, DOI 10.1145/142675.142681
  • [5] Gartner B., 1997, Proceedings of the Thirteenth Annual Symposium on Computational Geometry, P430, DOI 10.1145/262839.263066
  • [6] John F., 2014, STUDIEESSAYPRESE, P197, DOI [10.1007/978-3-0348-0439-4_9.h5i, DOI 10.1007/978-3-0348-0439-4_9.H5I]
  • [7] Matousek J., 1992, Proceedings of the Eighth Annual Symposium on Computational Geometry, P1, DOI 10.1145/142675.142678
  • [8] LEDA - A PLATFORM FOR COMBINATORIAL AND GEOMETRIC COMPUTING
    MEHLHORN, K
    NAHER, S
    [J]. COMMUNICATIONS OF THE ACM, 1995, 38 (01) : 96 - 102
  • [9] POST MJ, 1984, P 16 ANN ACM S THEOR, P108
  • [10] POST MJ, 1982, CS8216 BROWN U DEP C