Joint probability distributions for a class of non-Markovian processes

被引:76
作者
Baule, A [1 ]
Friedrich, R [1 ]
机构
[1] Univ Munster, Inst Theoret Phys, D-48149 Munster, Germany
来源
PHYSICAL REVIEW E | 2005年 / 71卷 / 02期
关键词
D O I
10.1103/PhysRevE.71.026101
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider joint probability distributions for the class of coupled Langevin equations introduced by Fogedby [H. C. Fogedby, Phys. Rev. E 50, 1657 (1994)]. We generalize well-known results for the single-time probability distributions to the case of N-time joint probability distributions. It is shown that these probability distribution functions can be obtained by an integral transform from distributions of a Markovian process. The integral kernel obeys a partial differential equation with fractional time derivatives reflecting the non-Markovian character of the process.
引用
收藏
页数:9
相关论文
共 19 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]   Fractional Fokker-Planck equation, solution, and application [J].
Barkai, E .
PHYSICAL REVIEW E, 2001, 63 (04)
[3]  
Becker-Kern P, 2004, ANN PROBAB, V32, P730
[4]   LIMIT THEOREMS FOR OCCUPATION TIMES OF MARKOV PROCESSES [J].
BINGHAM, NH .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1971, 17 (01) :1-&
[5]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[6]   LANGEVIN-EQUATIONS FOR CONTINUOUS-TIME LEVY FLIGHTS [J].
FOGEDBY, HC .
PHYSICAL REVIEW E, 1994, 50 (02) :1657-1660
[7]   Statistics of Lagrangian velocities in turbulent flows [J].
Friedrich, R .
PHYSICAL REVIEW LETTERS, 2003, 90 (08) :4
[8]  
Gardiner C., 2010, STOCHASTIC METHODS H
[9]  
Gnedenko B., 1954, LIMIT DISTRIBUTIONS
[10]   Limit theorems for continuous-time random walks with infinite mean waiting times [J].
Meerschaert, MM ;
Scheffler, HP .
JOURNAL OF APPLIED PROBABILITY, 2004, 41 (03) :623-638