The host gene for intronic U17 small nucleolar RNAs in mammals has no protein-coding potential and is a member of the 5′-terminal oligopyrimidine gene family

被引:92
作者
Pelczar, P [1 ]
Filipowicz, W [1 ]
机构
[1] Friedrich Miescher Inst, CH-4002 Basel, Switzerland
关键词
D O I
10.1128/MCB.18.8.4509
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Intron-encoded U17a and U17b RNAs are members of the H/ACA-box class of small nucleolar RNAs (snoRNAs) participating in rRNA processing and modification. We have investigated the organization and expression of the U17 locus in human cells and found that intronic U17a and U17b sequences are transcribed as part of the three exon transcription unit, named U17HG, positioned approximately 9 kb upstream of the RCC1 locus. Comparison of the human and mouse U17HG genes has revealed that snoRNA-encoding intron sequences but not exon sequences are conserved between the two species and that neither human nor mouse spliced U17HG poly(A)(+) RNAs have the potential to code for proteins. Analyses of polysome profiles and effects of translation inhibitors on the abundance of U17HG RNA in HeLa cells indicated that despite its cytoplasmic localization, little if any U17HG RNA is associated with polysomes. This distinguishes U17HG RNA from another non-protein-coding snoRNA host gene product, UHG RNA, described previously (K, T, Tycowski, M, D, Shu, and J, A. Steitz, Nature 379:464-466, 1996), Determination of the 5' terminus of the U17HG RNA revealed that transcription of the U17HG gene starts with a C residue followed by a polypyrimidine tract, making this gene a member of the 5'-terminal oligopyrimidine (5'TOP) family, which includes genes encoding ribosomal proteins and some translation factors. Interestingly, other known snoRNA host genes, including the UHG gene (Tycowski et al., op, cit.), have features of the 5'TOP genes. Similar characteristics of the transcription start site regions in snoRNA host and ribosomal protein genes raise the possibility that expression of components of ribosome biogenesis and translational machineries is coregulated.
引用
收藏
页码:4509 / 4518
页数:10
相关论文
共 76 条
[1]  
Amaldi F, 1997, Prog Mol Subcell Biol, V18, P1
[2]   Genes expressed in neurons of adult male Drosophila [J].
Amrein, H ;
Axel, R .
CELL, 1997, 88 (04) :459-469
[3]  
Ausubel FM., 1994, Curr. Protoc. Mol. Biol
[4]   VERTEBRATE MESSENGER-RNAS WITH A 5'-TERMINAL PYRIMIDINE TRACT ARE CANDIDATES FOR TRANSLATIONAL REPRESSION IN QUIESCENT CELLS - CHARACTERIZATION OF THE TRANSLATIONAL CIS-REGULATORY ELEMENT [J].
AVNI, D ;
SHAMA, S ;
LORENI, F ;
MEYUHAS, O .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (06) :3822-3833
[5]   The RNA world of the nucleolus: Two major families of small RNAs defined by different box elements with related functions [J].
Balakin, AG ;
Smith, L ;
Fournier, MJ .
CELL, 1996, 86 (05) :823-834
[6]  
Bortolin ML, 1998, RNA, V4, P445
[7]   A small nucleolar RNP protein is required for pseudouridylation of eukaryotic ribosomal RNAs [J].
BousquetAntonelli, C ;
Henry, Y ;
Gelugne, JP ;
CaizerguesFerrer, M ;
Kiss, T .
EMBO JOURNAL, 1997, 16 (15) :4770-4776
[8]   THE PRODUCT OF THE H19 GENE MAY FUNCTION AS AN RNA [J].
BRANNAN, CI ;
DEES, EC ;
INGRAM, RS ;
TILGHMAN, SM .
MOLECULAR AND CELLULAR BIOLOGY, 1990, 10 (01) :28-36
[9]   THE PRODUCT OF THE MOUSE XIST GENE IS A 15 KB INACTIVE X-SPECIFIC TRANSCRIPT CONTAINING NO CONSERVED ORF AND LOCATED IN THE NUCLEUS [J].
BROCKDORFF, N ;
ASHWORTH, A ;
KAY, GF ;
MCCABE, VM ;
NORRIS, DP ;
COOPER, PJ ;
SWIFT, S ;
RASTAN, S .
CELL, 1992, 71 (03) :515-526
[10]   Processing of the intron-encoded U16 and U18 snoRNAs: The conserved C and D boxes control both the processing reaction and the stability of the mature snoRNA [J].
Caffarelli, E ;
Fatica, A ;
Prislei, S ;
DeGregorio, E ;
Fragapane, P ;
Bozzoni, I .
EMBO JOURNAL, 1996, 15 (05) :1121-1131