Taylor polynomial solution of high-order nonlinear Volterra-Fredholm integro-differential equations

被引:119
作者
Maleknejad, K [1 ]
Mahmoudi, Y
机构
[1] Iran Univ Sci & Technol, Sch Math, Tehran, Iran
[2] Azad Univ, Dept Math, Tehran, Iran
关键词
Taylor polynomials and series; Volterra and Fredholm integral equation; integro-differential equation;
D O I
10.1016/S0096-3003(03)00152-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a Taylor method is developed to find an approximate solution for high-order nonlinear Volterra-Fredholm integro-differential equation. Numerical examples presented to illustrate the accuracy of the method. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:641 / 653
页数:13
相关论文
共 7 条
[1]  
[Anonymous], 1996, INT J MATH EDUC SCI, DOI DOI 10.1080/0020739960270606
[2]  
DELVES LM, 1983, COMPUTATIONAL METHOD
[3]  
KANWAL RP, 1989, J MATH ED SCI TECHNO, V20, P411
[4]   CONTINUOUS-TIME COLLOCATION METHODS FOR VOLTERRA-FREDHOLM INTEGRAL-EQUATIONS [J].
KAUTHEN, JP .
NUMERISCHE MATHEMATIK, 1989, 56 (05) :409-424
[5]  
Sezer M, 1994, International Journal of Mathematical Education in Science and Technology, V25, P625, DOI [10.1080/0020739940250501, DOI 10.1080/0020739940250501]
[6]   The approximate solution of high-order linear Volterra-Fredholm integro-differential equations in terms of Taylor polynomials [J].
Yalçinbas, S ;
Sezer, M .
APPLIED MATHEMATICS AND COMPUTATION, 2000, 112 (2-3) :291-308
[7]   Taylor polynomial solutions of nonlinear Volterra-Fredholm integral equations [J].
Yalçinbas, S .
APPLIED MATHEMATICS AND COMPUTATION, 2002, 127 (2-3) :195-206