Specific interaction of the tomato bZIP transcription factor VSF-1 with a non-palindromic DNA sequence that controls vascular gene expression

被引:43
作者
Ringli, C [1 ]
Keller, B [1 ]
机构
[1] Swiss Fed Res Stn Agroecol & Agr, Dept Resistance & Qual Breeding, CH-8046 Zurich, Switzerland
关键词
bZIP transcription factor; cell wall; glycine-rich protein; vascular-specific expression; xylem;
D O I
10.1023/A:1006030007333
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The grp1.8 gene of French bean (Phaseolus vulgaris) is specifically expressed in vascular tissue and encodes a glycine-rich structural protein (GRP1.8) of the cell wall. Earlier promoter analysis had shown that a 28 bp fragment of the grp1.8 promoter (vs-1) confers vascular expression to heterologous minimal promoters and is bound by the tomato bZIP transcription factor VSF-1. Here, we analysed the interaction of VSF-1 with fragments of the vs-1 element and studied the molecular basis of specific binding both in the DNA sequence of the promoter element as well as in the protein. The minimal binding site of VSF-1 is a 9 bp, non-palindromic sequence with two non-identical half-sites and a central nucleotide which separates them. The amino acid sequence of the VSF-1 DNA-binding basic domain has a Lys at position -10 instead of a conserved Arg found in the other bZIP factors isolated so far. This lysine was found to be required for specific recognition of the non-palindromic binding site: a mutant VSF-1 with a Lys-to-Arg substitution at position -10 bound with higher affinity to a palindromic sequence than the wild-type protein. The minimal binding site of VSF-1 was sufficient and necessary to confer vascular specific expression to a heterologous promoter in vivo. The vsf-1 promoter also showed vascular-specific expression in transgenic tobacco. The close similarity of these expression patterns suggests that VSF-1 is specifically involved in vascular expression of the grp1.8 gene in plants.
引用
收藏
页码:977 / 988
页数:12
相关论文
共 48 条
[1]   ISOLATION AND MOLECULAR CHARACTERIZATION OF POSF21, AN ARABIDOPSIS-THALIANA GENE WHICH SHOWS CHARACTERISTICS OF A B-ZIP CLASS TRANSCRIPTION FACTOR [J].
AESCHBACHER, RA ;
SCHROTT, M ;
POTRYKUS, I ;
SAUL, MW .
PLANT JOURNAL, 1991, 1 (03) :303-316
[2]   ONCOGENE JUN ENCODES A SEQUENCE-SPECIFIC TRANS-ACTIVATOR SIMILAR TO AP-1 [J].
ANGEL, P ;
ALLEGRETTO, EA ;
OKINO, ST ;
HATTORI, K ;
BOYLE, WJ ;
HUNTER, T ;
KARIN, M .
NATURE, 1988, 332 (6160) :166-171
[3]   HOMODIMERIC AND HETERODIMERIC LEUCINE ZIPPER PROTEINS AND NUCLEAR FACTORS FROM PARSLEY RECOGNIZE DIVERSE PROMOTER ELEMENTS WITH ACGT CORES [J].
ARMSTRONG, GA ;
WEISSHAAR, B ;
HAHLBROCK, K .
PLANT CELL, 1992, 4 (05) :525-537
[4]   NEW PLANT BINARY VECTORS WITH SELECTABLE MARKERS LOCATED PROXIMAL TO THE LEFT T-DNA BORDER [J].
BECKER, D ;
KEMPER, E ;
SCHELL, J ;
MASTERSON, R .
PLANT MOLECULAR BIOLOGY, 1992, 20 (06) :1195-1197
[5]  
BOWMAN S, 1990, TECHNIQUE, V5, P254
[6]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[7]   TRANSCRIPTION REGULATORY PROTEINS IN HIGHER-PLANTS [J].
BRUNELLE, AN ;
CHUA, NH .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1993, 3 (02) :254-258
[8]   DIMERS, LEUCINE ZIPPERS AND DNA-BINDING DOMAINS [J].
BUSCH, SJ ;
SASSONECORSI, P .
TRENDS IN GENETICS, 1990, 6 (02) :36-40
[9]   BZIP PROTEINS BIND TO A PALINDROMIC SEQUENCE WITHOUT AN ACGT CORE LOCATED IN A SEED-SPECIFIC ELEMENT OF THE PEA LECTIN PROMOTER [J].
DEPATER, S ;
KATAGIRI, F ;
KIJNE, J ;
CHUA, NH .
PLANT JOURNAL, 1994, 6 (02) :133-140
[10]   Rapid stimulation of a soybean protein-serine kinase that phosphorylates a novel bZIP DNA-binding protein, G/HBF-1, during the induction of early transcription-dependent defenses [J].
DrogeLaser, W ;
Kaiser, A ;
Lindsay, W ;
Halkier, BA ;
Loake, GJ ;
Doerner, P ;
Dixon, RA ;
Lamb, C .
EMBO JOURNAL, 1997, 16 (04) :726-738