Seemingly unrelated regressions with spatial error components

被引:31
作者
Baltagi, Badi H. [1 ]
Pirotte, Alain [2 ,3 ]
机构
[1] Syracuse Univ, Ctr Policy Res, Syracuse, NY 13244 USA
[2] Univ Pantheon Assas Paris II, ERMES, F-75230 Paris 05, France
[3] INRETS DEST, Natl Inst Res Transports & Safety, F-93166 Noisy Le Grand, France
关键词
Seemingly unrelated regressions; Panel data; Spatial dependence; Heterogeneity; Forecasting; MOMENTS ESTIMATOR; GENERALIZED-METHOD; MODELS;
D O I
10.1007/s00181-010-0373-8
中图分类号
F [经济];
学科分类号
02 ;
摘要
This article considers various estimators using panel data seemingly unrelated regressions (SUR) with spatial error correlation. The true data generating process (DGP) is assumed to be SUR with spatial error of the autoregressive or moving average type. Moreover, the remainder term of the spatial process is assumed to follow an error component structure. Both maximum likelihood (ML) and generalized moments (GM) methods of estimation are used. Using Monte Carlo experiments, we check the performance of these estimators and their forecasts under misspecification of the spatial error process, various spatial weight matrices, and heterogeneous versus homogeneous panel data models.
引用
收藏
页码:5 / 49
页数:45
相关论文
共 29 条
[22]   ESTIMATING LONG-RUN RELATIONSHIPS FROM DYNAMIC HETEROGENEOUS PANELS [J].
PESARAN, MH ;
SMITH, R .
JOURNAL OF ECONOMETRICS, 1995, 68 (01) :79-113
[25]  
Srivastava V.K., 1987, SEEMINGLY UNRELATED
[27]  
Wan G.H., 1992, Empirical Economics, V17, P35, DOI [10.1007/BF01192473, DOI 10.1007/BF01192473, DOI 10.1007/978-3-642-50127-2_4]
[28]   Specification and estimation of a spatially and temporally autocorrelated seemingly unrelated regression model: application to crash rates in China [J].
Wang, Xiaokun ;
Kockelman, Kara M. .
TRANSPORTATION, 2007, 34 (03) :281-300