Input-dependent synaptic targeting of α2-subunit-containing GABAA receptors in synapses of hippocampal pyramidal cells of the rat

被引:167
作者
Nyíri, G
Freund, TF
Somogyi, P
机构
[1] Hungarian Acad Sci, Inst Expt Med, H-1450 Budapest, Hungary
[2] Univ Oxford, MRC, Anat Neuropharmacol Unit, Oxford OX1 3TH, England
关键词
basket cell; benzodiazepine; GABA; inhibition; neurotransmission; Zolpidem;
D O I
10.1046/j.1460-9568.2001.01407.x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Pyramidal cells, expressing at least 14 subunits of the heteropentameric GABA(A) receptor, receive GABAergic input on their soma and proximal dendrites from basket cells, activating GABA(A) receptors and containing either parvalbumin or cholecystokinin and vasoactive intestinal polypeptide. The properties of GABA(A) receptors are determined by the subunit composition, and synaptic receptor content governs the effect of the presynaptic neuron. Using a quantitative electron microscopic immunogold technique, we tested whether the synapses formed by the two types of basket cell show a difference in the subunit composition of GABA(A) receptors. Terminals of one of the basket cells were identified by antibodies to parvalbumin. Synapses made by parvalbumin-negative terminals showed five times more immunoreactivity for the alpha (2) subunit than synapses made by parvalbumin-positive basket cells, whose synapses were frequently immunonegative. This difference is likely to be due to specific GABA(A) receptor alpha subunit composition, because neither synaptic size nor immunoreactivity for the beta (2/3) subunits, indicating total receptor content, was different in these two synapse populations. Synapses established by axo-axonic cells on axon initial segments showed an intermediate number of immunoparticles for the alpha (2) subunit compared to those made by basket cells but, due to their smaller size, the density of the alpha (2) subunit immunoreactivity was higher in synapses on the axon. Because the two basket cell types innervate the same domain of the pyramidal cell, the results indicate that pyramidal cells have mechanisms to target GABA(A) receptors, under presynaptic influence, preferentially to distinct synapses. The two basket cell types act via partially distinct GABA(A) receptor populations.
引用
收藏
页码:428 / 442
页数:15
相关论文
共 73 条
[1]   Correlated morphological and neurochemical features identify different subsets of vasoactive intestinal polypeptide-immunoreactive interneurons in rat hippocampus [J].
Acsady, L ;
Arabadzisz, D ;
Freund, TF .
NEUROSCIENCE, 1996, 73 (02) :299-315
[2]   Molecular and pharmacological characterization of native cortical gamma-aminobutyric acid(A) receptors containing both alpha(1) and alpha(3) subunits [J].
Araujo, F ;
Tan, S ;
Ruano, D ;
Schoemaker, H ;
Benavides, J ;
Vitorica, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (44) :27902-27911
[3]  
Barnard EA, 1998, PHARMACOL REV, V50, P291
[4]   THE METABOTROPIC GLUTAMATE-RECEPTOR (MGLUR1-ALPHA) IS CONCENTRATED AT PERISYNAPTIC MEMBRANE OF NEURONAL SUBPOPULATIONS AS DETECTED BY IMMUNOGOLD REACTION [J].
BAUDE, A ;
NUSSER, Z ;
ROBERTS, JDB ;
MULVIHILL, E ;
MCILHINNEY, RAJ ;
SOMOGYI, P .
NEURON, 1993, 11 (04) :771-787
[5]  
BENKE D, 1994, J BIOL CHEM, V269, P27100
[6]   θ, a novel γ-aminobutyric acid type A receptor subunit [J].
Bonnert, TP ;
McKernan, RM ;
Farrar, S ;
le Bourdellès, B ;
Heavens, RP ;
Smith, DW ;
Hewson, L ;
Rigby, MR ;
Sirinathsinghji, DJS ;
Brown, N ;
Wafford, KA ;
Whiting, PJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (17) :9891-9896
[7]   Plasticity in fast synaptic inhibition of adult oxytocin neurons caused by switch in GABA(A) receptor subunit expression [J].
Brussaard, AB ;
Kits, KS ;
Baker, RE ;
Willems, WPA ;
LeytingVermeulen, JW ;
Voorn, P ;
Smit, AB ;
Bicknell, RJ ;
Herbison, AE .
NEURON, 1997, 19 (05) :1103-1114
[8]   DIVERSE SOURCES OF HIPPOCAMPAL UNITARY INHIBITORY POSTSYNAPTIC POTENTIALS AND THE NUMBER OF SYNAPTIC RELEASE SITES [J].
BUHL, EH ;
HALASY, K ;
SOMOGYI, P .
NATURE, 1994, 368 (6474) :823-828
[9]   TEMPORAL STRUCTURE IN SPATIALLY ORGANIZED NEURONAL ENSEMBLES - A ROLE FOR INTERNEURONAL NETWORKS [J].
BUZSAKI, G ;
CHROBAK, JJ .
CURRENT OPINION IN NEUROBIOLOGY, 1995, 5 (04) :504-510
[10]   PARVALBUMIN IN MOST GAMMA-AMINOBUTYRIC-ACID CONTAINING NEURONS OF THE RAT CEREBRAL-CORTEX [J].
CELIO, MR .
SCIENCE, 1986, 231 (4741) :995-997