Arabidopsis thaliana deficient in two chloroplast ascorbate peroxidases shows accelerated light-induced necrosis when levels of cellular ascorbate are low

被引:113
作者
Giacomelli, Lisa
Masi, Antonio
Ripoll, Daniel R.
Lee, Mi Ja
van Wijk, Klaas J.
机构
[1] Cornell Univ, Dept Plant Biol, Ithaca, NY 14853 USA
[2] Cornell Univ, Ctr Theory, Computat Biol Serv Unit, Ithaca, NY 14853 USA
关键词
ascorbate peroxidases; Arabidopsis thaliana; chloroplast; oxidative stress; ascorbate;
D O I
10.1007/s11103-007-9227-y
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Arabidopsis chloroplasts have a multi-layered defense against hydrogen peroxide (H2O2) that includes a stromal and thylakoid ascorbate peroxidase (sAPX and tAPX). Single and double null mutants in SAPX and TAPX (sapx and tapx) were each crossed with ascorbate deficient vtc2. The single, double and triple mutants did not show visual light stress phenotypes when grown at control or high light intensities (CL and HL; 120 and 1,000 mu mol photons m(-2) S-1). Upon shift from CL to HL, mesophyll of expanded leaves of the triple mutant bleached within hours, with exclusion of the major vein areas; this contrasts to reported patterns of cell death under ozone treatment and calatase deficiency. tapx-vtc2 and sapx-vtc2, but not tapx-sapx or single mutants, showed limited bleaching. Bleaching and necrosis were accompanied by accumulation of H2O2. Cellular concentrations of a-tocopherol, ascorbate and glutathione showed dramatic increase in response to HL in all eight genotypes and the four vtc2 genotypes accumulated more glutathione under CL than the others. Transcript analysis of other ROS responsive genes in vtc2 and the triple mutant showed up to 20-fold induction after transition to HL, generally irrespective of genotype. We conclude that chloroplast APX proteins in Arabidopsis can be effectively compensated by other endogenous H2O2 detoxification systems, but that low cellular ascorbate levels in absence of chloroplast APX activity are detrimental to the cell during excess light.
引用
收藏
页码:627 / 644
页数:18
相关论文
共 61 条
[1]   Reactive oxygen species: Metabolism, oxidative stress, and signal transduction [J].
Apel, K ;
Hirt, H .
ANNUAL REVIEW OF PLANT BIOLOGY, 2004, 55 :373-399
[2]   The timing of senescence and response to pathogens is altered in the ascorbate-deficient Arabidopsis mutant vitamin c-1 [J].
Barth, C ;
Moeder, W ;
Klessig, DF ;
Conklin, PL .
PLANT PHYSIOLOGY, 2004, 134 (04) :1784-1792
[3]   The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance [J].
Bowling, SA ;
Clarke, JD ;
Liu, YD ;
Klessig, DF ;
Dong, XN .
PLANT CELL, 1997, 9 (09) :1573-1584
[4]   Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants [J].
Chew, O ;
Whelan, J ;
Millar, AH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (47) :46869-46877
[5]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[6]  
Conklin PL, 2000, GENETICS, V154, P847
[7]   Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco [J].
Dat, JF ;
Pellinen, R ;
Beeckman, T ;
Van de Cotte, B ;
Langebartels, C ;
Kangasjärvi, J ;
Inzé, D ;
Van Breusegem, F .
PLANT JOURNAL, 2003, 33 (04) :621-632
[8]   Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis [J].
Davletova, S ;
Rizhsky, L ;
Liang, HJ ;
Zhong, SQ ;
Oliver, DJ ;
Coutu, J ;
Shulaev, V ;
Schlauch, K ;
Mittler, R .
PLANT CELL, 2005, 17 (01) :268-281
[9]   Ascorbate synthesis and ascorbate peroxidase activity during the early stage of wheat germination [J].
DeGara, L ;
dePinto, MC ;
Arrigoni, O .
PHYSIOLOGIA PLANTARUM, 1997, 100 (04) :894-900
[10]   The function of peroxiredoxins in plant organelle redox metabolism [J].
Dietz, Karl-Josef ;
Jacob, Simone ;
Oelze, Marie-Luise ;
Laxa, Miriam ;
Tognetti, Vanesa ;
Nunes de Miranda, Susana Marina ;
Baier, Margarete ;
Finkemeier, Iris .
JOURNAL OF EXPERIMENTAL BOTANY, 2006, 57 (08) :1697-1709