Combined low-temperature scanning tunneling/atomic force microscope for atomic resolution imaging and site-specific force spectroscopy

被引:60
作者
Albers, Boris J. [1 ,2 ]
Liebmann, Marcus [1 ,2 ]
Schwendemann, Todd C. [1 ,2 ]
Baykara, Mehmet Z. [1 ,2 ]
Heyde, Markus [3 ]
Salmeron, Miquel [3 ]
Altman, Eric I. [2 ,4 ]
Schwarz, Udo D. [1 ,2 ]
机构
[1] Yale Univ, Dept Mech Engn, New Haven, CT 06520 USA
[2] Yale Univ, Ctr Res Interface Struct & Phenomena, New Haven, CT 06520 USA
[3] Univ Calif Berkeley, Div Mat Sci, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[4] Yale Univ, Dept Chem Engn, New Haven, CT 06520 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.2842631
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We present the design and first results of a low-temperature, ultrahigh vacuum scanning probe microscope enabling atomic resolution imaging in both scanning tunneling microscopy (STM) and noncontact atomic force microscopy (NC-AFM) modes. A tuning-fork-based sensor provides flexibility in selecting probe tip materials, which can be either metallic or nonmetallic. When choosing a conducting tip and sample, simultaneous STM/NC-AFM data acquisition is possible. Noticeable characteristics that distinguish this setup from similar systems providing simultaneous STM/NC-AFM capabilities are its combination of relative compactness (on-top bath cryostat needs no pit), in situ exchange of tip and sample at low temperatures, short turnaround times, modest helium consumption, and unrestricted access from dedicated flanges. The latter permits not only the optical surveillance of the tip during approach but also the direct deposition of molecules or atoms on either tip or sample while they remain cold. Atomic corrugations as low as 1 pm could successfully be resolved. In addition, lateral drifts rates of below 15 pm/h allow long-term data acquisition series and the recording of site-specific spectroscopy maps. Results obtained on Cu(111) and graphite illustrate the microscope's performance. (C) 2008 American Institute of Physics.
引用
收藏
页数:9
相关论文
共 72 条
  • [1] Dynamic scanning force microscopy at low temperatures on a van der Waals surface: graphite (0001)
    Allers, W
    Schwarz, A
    Schwarz, UD
    Wiesendanger, R
    [J]. APPLIED SURFACE SCIENCE, 1999, 140 (3-4) : 247 - 252
  • [2] Scanning force microscope with atomic resolution in ultrahigh vacuum and at low temperatures
    Allers, W
    Schwarz, A
    Schwarz, UD
    Wiesendanger, R
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1998, 69 (01) : 221 - 225
  • [3] Interpretation of the atomic scale contrast obtained on graphite and single-walled carbon nanotubes in the dynamic mode of atomic force microscopy
    Ashino, M
    Schwarz, A
    Hölscher, H
    Schwarz, UD
    Wiesendanger, R
    [J]. NANOTECHNOLOGY, 2005, 16 (03) : S134 - S137
  • [4] CONFINEMENT OF ELECTRONS TO QUANTUM CORRALS ON A METAL-SURFACE
    CROMMIE, MF
    LUTZ, CP
    EIGLER, DM
    [J]. SCIENCE, 1993, 262 (5131) : 218 - 220
  • [5] VARIABLE-TEMPERATURE ULTRAHIGH-VACUUM ATOMIC-FORCE MICROSCOPE
    DAI, Q
    VOLLMER, R
    CARPICK, RW
    OGLETREE, DF
    SALMERON, M
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1995, 66 (11) : 5266 - 5271
  • [6] IMAGING XE WITH A LOW-TEMPERATURE SCANNING TUNNELING MICROSCOPE
    EIGLER, DM
    WEISS, PS
    SCHWEIZER, EK
    LANG, ND
    [J]. PHYSICAL REVIEW LETTERS, 1991, 66 (09) : 1189 - 1192
  • [7] POSITIONING SINGLE ATOMS WITH A SCANNING TUNNELING MICROSCOPE
    EIGLER, DM
    SCHWEIZER, EK
    [J]. NATURE, 1990, 344 (6266) : 524 - 526
  • [8] Fiber interferometer-based variable temperature scanning force microscope
    Euler, R
    Memmert, U
    Hartmann, U
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1997, 68 (04) : 1776 - 1778
  • [9] Atomic force microscopy images of lyotropic lamellar phases
    Garza, C.
    Thieghi, L. T.
    Castillo, R.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (05)
  • [10] Imaging silicon by atomic force microscopy with crystallographically oriented tips
    Giessibl, F. J.
    Hembacher, S.
    Bielefeldt, H.
    Mannhart, J.
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2001, 72 (Suppl 1): : S15 - S17