Controlled SnO2 Crystallinity Effectively Dominating Sodium Storage Performance

被引:207
作者
Fan, Linlin [1 ]
Li, Xifei [1 ]
Yan, Bo [1 ]
Feng, Jianmin [1 ]
Xiong, Dongbin [1 ]
Li, Dejun [1 ]
Gu, Lin [2 ]
Wen, Yuren [2 ]
Lawes, Stephen [3 ]
Sun, Xueliang [1 ,3 ]
机构
[1] Tianjin Normal Univ, Energy & Mat Engn Ctr, Coll Phys & Mat Sci, Tianjin 300387, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[3] Western Univ, Dept Mech & Mat Engn, Nanomat & Energy Lab, London, ON N6A 5B9, Canada
基金
中国国家自然科学基金;
关键词
REDUCED GRAPHENE OXIDE; COMPOSITE CATHODE MATERIAL; CAPACITY ANODE MATERIAL; LITHIUM-ION BATTERIES; TIN OXIDE; ELECTROCHEMICAL PROPERTIES; SNO2/GRAPHENE COMPOSITE; NANOFIBER COMPOSITES; CYCLIC PERFORMANCE; FUNCTIONAL-GROUPS;
D O I
10.1002/aenm.201502057
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The exploration of sodium ion batteries (SIBs) is a profound challenge due to the rich sodium abundance and limited supply of lithium on earth. Here, amorphous SnO2/graphene aerogel (a-SnO2/GA) nanocomposites have been successfully synthesized via a hydrothermal method for use as anode materials in SIBs. The designed annealing process produces crystalline SnO2/graphene aerogel (c-SnO2/GA) nanocomposites. For the first time, the significant effects of SnO2 crystallinity on sodium storage performance are studied in detail. Notably, a-SnO2/GA is more effective than c-SnO2/GA in overcoming electrode degradation from large volume changes associated with charge-discharge processes. Surprisingly, the amorphous SnO2 delivers a high specific capacity of 380.2 mAh g(-1) after 100 cycles at a current density of 50 mA g(-1), which is almost three times as much as for crystalline SnO2 (138.6 mAh g(-1)). The impressive electrochemical performance of amorphous SnO2 can be attributed to the intrinsic isotropic nature, the enhanced Na+ diffusion coefficient, and the strong interaction between amorphous SnO2 and GA. In addition, amorphous SnO2 particles with the smaller size better function to relieve the volume expansion/shrinkage. This study provides a significant research direction aiming to increase the electrochemical performance of the anode materials used in SIBs.
引用
收藏
页数:13
相关论文
共 78 条
[1]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[2]   Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling [J].
Chen, Chaoji ;
Wen, Yanwei ;
Hu, Xianluo ;
Ji, Xiulei ;
Yan, Mengyu ;
Mai, Liqiang ;
Hu, Pei ;
Shan, Bin ;
Huang, Yunhui .
NATURE COMMUNICATIONS, 2015, 6
[3]   Carbonized common filter paper decorated with Sn@C nanospheres as additive-free electrodes for sodium-ion batteries [J].
Chen, Wei ;
Deng, Da .
CARBON, 2015, 87 :70-77
[4]   Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites [J].
Courtney, IA ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (06) :2045-2052
[5]   Sodiation vs. lithiation phase transformations in a high rate - high stability SnO2 in carbon nanocomposite [J].
Ding, Jia ;
Li, Zhi ;
Wang, Huanlei ;
Cui, Kai ;
Kohandehghan, Alireza ;
Tan, Xuehai ;
Karpuzov, Dimitre ;
Mitlin, David .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (13) :7100-7111
[6]   Carbon-enhanced electrodeposited SnO2/carbon nanofiber composites as anode for lithium-ion batteries [J].
Dirican, Mahmut ;
Yanilmaz, Meltem ;
Fu, Kun ;
Lu, Yao ;
Kizil, Huseyin ;
Zhang, Xiangwu .
JOURNAL OF POWER SOURCES, 2014, 264 :240-247
[7]   A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries [J].
Ellis, B. L. ;
Makahnouk, W. R. M. ;
Makimura, Y. ;
Toghill, K. ;
Nazar, L. F. .
NATURE MATERIALS, 2007, 6 (10) :749-753
[8]   Tin Oxide/Graphene Aerogel Nanocomposites Building Superior Rate Capability for Lithium Ion Batteries [J].
Fan, Linlin ;
Li, Xifei ;
Cui, Yanhua ;
Xu, Hui ;
Zhang, Xianfa ;
Xiong, Dongbin ;
Yan, Bo ;
Wang, Yufen ;
Li, Dejun .
ELECTROCHIMICA ACTA, 2015, 176 :610-619
[9]   High energy density amorphous silicon anodes for lithium ion batteries deposited by DC sputtering [J].
Farmakis, Filippos ;
Elmasides, Costas ;
Fanz, Patrik ;
Hagen, Markus ;
Georgoulas, Nikolaos .
JOURNAL OF POWER SOURCES, 2015, 293 :301-305
[10]   Effect of CVD carbon coatings on Si@CNF composite as anode for lithium-ion batteries [J].
Fu, Kun ;
Xue, Leigang ;
Yildiz, Ozkan ;
Li, Shuli ;
Lee, Hun ;
Li, Ying ;
Xu, Guanjie ;
Zhou, Lan ;
Bradford, Philip D. ;
Zhang, Xiangwu .
NANO ENERGY, 2013, 2 (05) :976-986