Sodiation vs. lithiation phase transformations in a high rate - high stability SnO2 in carbon nanocomposite

被引:111
作者
Ding, Jia [1 ]
Li, Zhi [1 ]
Wang, Huanlei [1 ]
Cui, Kai [2 ]
Kohandehghan, Alireza [1 ]
Tan, Xuehai [1 ]
Karpuzov, Dimitre [3 ]
Mitlin, David [1 ,4 ]
机构
[1] Univ Alberta, Chem & Mat Engn, Edmonton, AB T6G 2V4, Canada
[2] Natl Res Council Canada, Natl Inst Nanotechnol NINT, Edmonton, AB T6G 2M9, Canada
[3] Univ Alberta, ACSES, Edmonton, AB T6G 2G6, Canada
[4] Clarkson Univ, Chem & Biomol Engn & Mech Engn, Potsdam, NY 13699 USA
关键词
NA-ION BATTERIES; REVERSIBLE LITHIUM STORAGE; CAPACITY ANODE MATERIALS; REDUCED GRAPHENE OXIDE; HIGH-PERFORMANCE ANODE; ELECTROCHEMICAL PERFORMANCE; RATE CAPABILITY; CYCLING STABILITY; TIN NANOPARTICLES; SUPERIOR RATE;
D O I
10.1039/c5ta00399g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We employed a glucose mediated hydrothermal self-assembly method to create a SnO2-carbon nanocomposite with promising electrochemical performance as both a sodium and a lithium ion battery anode (NIBs NABs SIBs, LIBs), being among the best in terms of cyclability and rate capability when tested against Na. In parallel we provide a systematic side-by-side comparison of the sodiation vs. lithiation phase transformations in nano SnO2. The high surface area (338 m(2) g(-1)) electrode is named C-SnO2, and consists of a continuous Li and Na active carbon frame with internally imbedded sub-5 nm SnO2 crystallites of high mass loading (60 wt%). The frame imparts excellent electrical conductivity to the electrode, allows for rapid diffusion of Na and Li ions, and carries the sodiation/lithiation stresses while preventing cycling-induced agglomeration of the individual crystals. C-SnO2 employed as a NIB anode displays a reversible capacity of 531 mA h g(-1) (at 0.08 A g(-1)) with 81% capacity retention after 200 cycles, while capacities of 240, 188 and 133 mA h g(-1) are achieved at the much higher rates of 1.3, 2.6 and 5 A g(-1). As a LIB anode C-SnO2 maintains a capacity of 1367 mA h g(-1) (at 0.5 A g(-1)) after 400 cycles, and 420 mA h g(-1) at 10 A g(-1). Combined TEM, XRD and XPS prove that the much lower capacity of SnO2 as a NIB anode is due to the kinetic difficulty of the Na-Sn alloying reaction to reach the terminal Na15Sn4 intermetallic, whereas for Li-Sn the Li22Sn5 intermetallic is readily formed at 0.01 V. Rather, with applied voltage a significant portion of the material effectively shuffles between SnO2 and beta-Sn + NaO2. The conversion reaction proceeds differently in the two systems: LiO2 is reduced directly to SnO2 and Li, whereas the NaO2 to SnO2 reaction proceeds through an intermediate SnO phase.
引用
收藏
页码:7100 / 7111
页数:12
相关论文
共 93 条
[1]   Preparation of SnO2 films with thermally stable nanoparticles [J].
Adamyan, AZ ;
Adamian, ZN ;
Aroutiounian, VM .
SENSORS, 2003, 3 (10) :438-442
[2]   A novel gel electrolyte with lithium difluoro(oxalato)borate salt and Sb2O3 nanoparticles for lithium ion batteries [J].
Aravindan, V. ;
Vickraman, P. .
SOLID STATE SCIENCES, 2007, 9 (11) :1069-1073
[3]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[4]   The reaction mechanism of SnSb and Sb thin film anodes for Na-ion batteries studied by X-ray diffraction, 119Sn and 121Sb Mossbauer spectroscopies [J].
Baggetto, Loic ;
Hah, Hien-Yoong ;
Jumas, Jean-Claude ;
Johnson, Charles E. ;
Johnson, Jacqueline A. ;
Keum, Jong K. ;
Bridges, Craig A. ;
Veith, Gabriel M. .
JOURNAL OF POWER SOURCES, 2014, 267 :329-336
[5]   Probing the Mechanism of Sodium Ion Insertion into Copper Antimony Cu2Sb Anodes [J].
Baggetto, Loic ;
Carroll, Kyler J. ;
Hah, Hien-Yoong ;
Johnson, Charles E. ;
Mullins, David R. ;
Unocic, Raymond R. ;
Johnson, Jacqueline A. ;
Meng, Ying Shirley ;
Veith, Gabriel M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (15) :7856-7864
[6]   Electrospun Carbon-Tin Oxide Composite Nanofibers for Use as Lithium Ion Battery Anodes [J].
Bonino, Christopher A. ;
Ji, Liwen ;
Lin, Zhan ;
Toprakci, Ozan ;
Zhang, Xiangwu ;
Khan, Saad A. .
ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (07) :2534-2542
[7]   Embedding tin nanoparticles in micron-sized disordered carbon for lithium- and sodium-ion anodes [J].
Bresser, Dominic ;
Mueller, Franziska ;
Buchholz, Daniel ;
Paillard, Elie ;
Passerini, Stefano .
ELECTROCHIMICA ACTA, 2014, 128 :163-171
[8]   Electrodeposited Sb and Sb/Sb2O3 nanoparticle coatings as anode materials for Li-ion batteries [J].
Bryngelsson, Hanna ;
Eskhult, Jonas ;
Nyholm, Leif ;
Herranen, Merja ;
Alm, Oscar ;
Edstrom, Kristina .
CHEMISTRY OF MATERIALS, 2007, 19 (05) :1170-1180
[9]   Nitrogen-doped open pore channeled graphene facilitating electrochemical performance of TiO2 nanoparticles as an anode material for sodium ion batteries [J].
Cha, Hyun Ae ;
Jeong, Hyung Mo ;
Kang, Jeung Ku .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (15) :5182-5186
[10]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35