Embedding tin nanoparticles in micron-sized disordered carbon for lithium- and sodium-ion anodes

被引:85
作者
Bresser, Dominic
Mueller, Franziska
Buchholz, Daniel
Paillard, Elie [1 ]
Passerini, Stefano
机构
[1] Univ Munster, Inst Phys Chem, D-48149 Munster, Germany
关键词
Tin nanoparticles; Carbon matrix; Sodium-ion anode; Lithium-ion anode; Battery; SN-C COMPOSITE; SOLID-ELECTROLYTE INTERPHASE; X-RAY-SCATTERING; NEGATIVE ELECTRODES; PARTICLE-SIZE; HOLLOW CARBON; ELECTROCHEMICAL LITHIATION; ALLOY ANODES; COATED SNO2; INSERTION;
D O I
10.1016/j.electacta.2013.09.007
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Herein, a new and facile synthesis of a tin-carbon nanocomposite and its electrochemical characterization is presented. Tin nanoparticles were embedded in micron-sized carbonaceous particles, thus successfully preventing the aggregation of tin nanoparticles and buffering the occurring volume strain, which accompanies the reversible (de-)alloying process. Such active material presents specific capacities of around 440 and 390 mAh g(-1) for applied specific currents of 0.1 and 0.2 A g(-1), respectively, as lithium-ion anode using environmentally friendly and cost-efficient carboxymethyl cellulose as binder. Even more remarkably, at very high specific currents of 2, 5, and 10 A g(-1), electrodes based on this composite still offer specific capacities of about 280, 240, and 187 mAh g(-1), respectively. In addition, this tin-carbon nanocomposite appears highly promising as anode material for sodium-ion batteries, showing very stable cycling performance in a suitable potential range, and specific capacities of more than 180, 150, 130, and 90 mAh g(-1) for an applied specific current of 12.2, 122,244, and 610 mA g(-1), respectively, thus highlighting the high versatility of this composite active material for both Li-ion and Na-ion battery technologies. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:163 / 171
页数:9
相关论文
共 88 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Characterization of sodium ion electrochemical reaction with tin anodes: Experiment and theory [J].
Baggetto, Loic ;
Ganesh, P. ;
Meisner, Roberta P. ;
Unocic, Raymond R. ;
Jumas, Jean-Claude ;
Bridges, Craig A. ;
Veith, Gabriel M. .
JOURNAL OF POWER SOURCES, 2013, 234 :48-59
[3]   Anomalous, high-voltage irreversible capacity in tin electrodes for lithium batteries [J].
Beattie, SD ;
Hatchard, T ;
Bonakdarpour, A ;
Hewitt, KC ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (06) :A701-A705
[4]   The electrochemical reaction of lithium with tin studied by in situ AFM [J].
Beaulieu, LY ;
Beattie, SD ;
Hatchard, TD ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (04) :A419-A424
[5]   DIMENSIONALLY STABLE LI-ALLOY ELECTRODES FOR SECONDARY BATTERIES [J].
BESENHARD, JO ;
HESS, M ;
KOMENDA, P .
SOLID STATE IONICS, 1990, 40-1 :525-529
[6]   Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? [J].
Besenhard, JO ;
Yang, J ;
Winter, M .
JOURNAL OF POWER SOURCES, 1997, 68 (01) :87-90
[7]   ALL-SOLID LITHIUM ELECTRODES WITH MIXED-CONDUCTOR MATRIX [J].
BOUKAMP, BA ;
LESH, GC ;
HUGGINS, RA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1981, 128 (04) :725-729
[8]   Decomposition of ethylene carbonate on electrodeposited metal thin film anode [J].
Bridel, Jean-Sebastien ;
Grugeon, Sylvie ;
Laruelle, Stephane ;
Hassoun, Jusef ;
Reale, Priscilla ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
JOURNAL OF POWER SOURCES, 2010, 195 (07) :2036-2043
[9]   On the reduction of lithium insertion capacity in hard-carbon anode materials with increasing heat-treatment temperature [J].
Buiel, E ;
George, AE ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (07) :2252-2257
[10]   Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries [J].
Buqa, H. ;
Holzapfel, M. ;
Krumeich, F. ;
Veit, C. ;
Novak, P. .
JOURNAL OF POWER SOURCES, 2006, 161 (01) :617-622