Persistence of manifolds in nonequilibrium critical dynamics

被引:25
作者
Majumdar, SN [1 ]
Bray, AJ
机构
[1] Univ Toulouse 3, CNRS, UMR C5626, Phys Quant Lab, F-31062 Toulouse, France
[2] Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, Lancs, England
关键词
D O I
10.1103/PhysRevLett.91.030602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the persistence probability P(t) that, starting from a random initial condition, the magnetization of a d(')-dimensional manifold of a d-dimensional spin system at its critical point does not change sign up to time t. For d(')>0 we find three distinct late-time decay forms for P(t): exponential, stretched exponential, and power law, depending on a single parameter zeta=(D-2+eta)/z, where D=d-d(') and eta,z are standard critical exponents. In particular, we predict that for a line magnetization in the critical d=2 Ising model, P(t) decays as a power law while, for d=3, P(t) decays as a power of t for a plane magnetization but as a stretched exponential for a line magnetization. Numerical results are consistent with these predictions.
引用
收藏
页码:1 / 030602
页数:4
相关论文
共 19 条
[1]   Numerical study of persistence in models with absorbing states -: art. no. 031104 [J].
Albano, EV ;
Muñoz, MA .
PHYSICAL REVIEW E, 2001, 63 (03) :031104-031104
[2]   THEORY OF PHASE-ORDERING KINETICS [J].
BRAY, AJ .
ADVANCES IN PHYSICS, 1994, 43 (03) :357-459
[3]   Block persistence [J].
Cueille, S ;
Sire, C .
EUROPEAN PHYSICAL JOURNAL B, 1999, 7 (01) :111-127
[4]   Global persistence exponent of the two-dimensional Blume-Capel model -: art. no. 057102 [J].
da Silva, R ;
Alves, NA ;
de Felício, JRD .
PHYSICAL REVIEW E, 2003, 67 (05)
[5]   Numerical study of local and global persistence in directed percolation [J].
Hinrichsen, H ;
Koduvely, HM .
EUROPEAN PHYSICAL JOURNAL B, 1998, 5 (02) :257-264
[6]   REMANENT MAGNETIZATION DECAY AT THE SPIN-GLASS CRITICAL-POINT - A NEW DYNAMIC CRITICAL EXPONENT FOR NONEQUILIBRIUM AUTOCORRELATIONS [J].
HUSE, DA .
PHYSICAL REVIEW B, 1989, 40 (01) :304-308
[7]   NEW UNIVERSAL SHORT-TIME SCALING BEHAVIOR OF CRITICAL RELAXATION PROCESSES [J].
JANSSEN, HK ;
SCHAUB, B ;
SCHMITTMANN, B .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1989, 73 (04) :539-549
[8]   Persistence exponents for fluctuating interfaces [J].
Krug, J ;
Kallabis, H ;
Majumdar, SN ;
Cornell, SJ ;
Bray, AJ ;
Sire, C .
PHYSICAL REVIEW E, 1997, 56 (03) :2702-2712
[9]   Persistence distributions in a conserved lattice gas with absorbing states [J].
Lübeck, S ;
Misra, A .
EUROPEAN PHYSICAL JOURNAL B, 2002, 26 (01) :75-79
[10]   Global persistence exponent for nonequilibrium critical dynamics [J].
Majumdar, SN ;
Bray, AJ ;
Cornell, SJ ;
Sire, C .
PHYSICAL REVIEW LETTERS, 1996, 77 (18) :3704-3707