Global persistence exponent for nonequilibrium critical dynamics

被引:156
作者
Majumdar, SN
Bray, AJ
Cornell, SJ
Sire, C
机构
[1] UNIV MANCHESTER,DEPT THEORET PHYS,MANCHESTER M13 9PL,LANCS,ENGLAND
[2] UNIV TOULOUSE 3,UMR C5626 CNRS,PHYS QUANT LAB,F-31062 TOULOUSE,FRANCE
关键词
D O I
10.1103/PhysRevLett.77.3704
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A ''persistence exponent'' theta is defined for nonequilibrium critical phenomena. It describes the probability, p(t) similar to t(-theta), that the global order parameter has not changed sign in the time interval t following a quench to the critical point from a disordered state. This exponent is calculated in mean-field theory, in the n = infinity limit of the O(n) model, to first order in epsilon = 4 - d, and for the 1D Ising model. Numerical results are obtained for the 2D Ising model. We argue that theta is a new independent exponent.
引用
收藏
页码:3704 / 3707
页数:4
相关论文
共 19 条
[1]   DIFFUSION ANNIHILATION IN ONE DIMENSION AND KINETICS OF THE ISING-MODEL AT ZERO TEMPERATURE [J].
AMAR, JG ;
FAMILY, F .
PHYSICAL REVIEW A, 1990, 41 (06) :3258-3262
[2]   NONTRIVIAL ALGEBRAIC DECAY IN A SOLUBLE MODEL OF COARSENING [J].
BRAY, AJ ;
DERRIDA, B ;
GODRECHE, C .
EUROPHYSICS LETTERS, 1994, 27 (03) :175-180
[3]   THEORY OF PHASE-ORDERING KINETICS [J].
BRAY, AJ .
ADVANCES IN PHYSICS, 1994, 43 (03) :357-459
[4]   UNIVERSAL SCALING FUNCTION FOR DOMAIN GROWTH IN THE GLAUBER-ISING CHAIN [J].
BRAY, AJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (02) :L67-L72
[5]  
BRAY AJ, UNPUB
[6]  
CHATURVEDI S, 1983, LECT NOTES PHYS, V184, P19
[7]   EXACT FIRST-PASSAGE EXPONENTS OF 1D DOMAIN GROWTH - RELATION TO A REACTION-DIFFUSION MODEL [J].
DERRIDA, B ;
HAKIM, V ;
PASQUIER, V .
PHYSICAL REVIEW LETTERS, 1995, 75 (04) :751-754
[8]   NONTRIVIAL EXPONENTS IN THE ZERO-TEMPERATURE DYNAMICS OF THE 1D ISING AND POTTS MODELS [J].
DERRIDA, B ;
BRAY, AJ ;
GODRECHE, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (11) :L357-L361
[9]  
DERRIDA B, 1996, PHYS REV LETT, V77, P2971
[10]  
Feller W., 1966, INTRO PROBABILITY TH, VII