Synthesis, analysis, and electrical property measurements of compound nantubes in the B-C-N ceramic system

被引:51
作者
Golberg, D [1 ]
Bando, Y
Dorozhkin, P
Dong, ZC
机构
[1] Natl Inst Mat Sci, Adv Mat Lab, Adv Beam Anal Grp, Tsukuba, Ibaraki, Japan
[2] Natl Inst Mat Sci, Int Ctr Young Scientists, Tsukuba, Ibaraki, Japan
[3] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan
[4] Russian Acad Sci, Inst Solid State Phys, Chernogolovka 142432, Russia
[5] Natl Inst Mat Sci, Nanomat Lab, Tsukuba, Ibaraki, Japan
关键词
ceramic nanostructures; electrical properties; nanotubes; transmission electron microscopy (TEM);
D O I
10.1557/mrs2004.15
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanotubular structures in the B-C-N ceramic system represent an intriguing alternative to conventional carbon nanotubes. Because of the ability to widely vary the chemical composition of nanotubes within the B-C-N ternary phase diagram and to change the stacking of C-rich or BN-rich tubular shells in multiwalled structures, a wide horizon opens up for tuning nanostructure electrical properties. Pure carbon nanotubes are metals or narrow-bandgap semiconductors, depending on the helicity and diameter, whereas those of BN are insulators With a similar to5.0 eV gap independent of these parameters. Thus, the relative B/C/N ratios and/or BN-rich and C-rich domain spatial arrangements, rather than tube helicity and diameter, are assumed to primarily determine the B-C-N nanotube electrical response. This characteristic is highly valuable for nanotechnology. while tube diameter and helicity are currently difficult to control, continuous doping of C with BN, or vice versa, proceeds relatively,easily due to the isostructural nature of layered C and BN materials. In this article, recent progress in the synthesis, microscopic analysis, and electrical property measurements of a variety of compound nanotubes in the ceramic B-C-N system is documented and discussed.
引用
收藏
页码:38 / 42
页数:5
相关论文
共 40 条
[1]   Insulating 'nanocables': Invar Fe-Ni alloy nanorods inside BN nanotubes [J].
Bando, Y ;
Ogawa, K ;
Golberg, D .
CHEMICAL PHYSICS LETTERS, 2001, 347 (4-6) :349-354
[2]   Carbon nanotubes - the route toward applications [J].
Baughman, RH ;
Zakhidov, AA ;
de Heer, WA .
SCIENCE, 2002, 297 (5582) :787-792
[3]   Single-walled BN nanostructures [J].
Bengu, E ;
Marks, LD .
PHYSICAL REVIEW LETTERS, 2001, 86 (11) :2385-2387
[4]   Structural and electronic properties of composite BxCyNz nanotubes and heterojunctions [J].
Blase, X ;
Charlier, JC ;
De Vita, A ;
Car, R .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1999, 68 (03) :293-300
[5]   STABILITY AND BAND-GAP CONSTANCY OF BORON-NITRIDE NANOTUBES [J].
BLASE, X ;
RUBIO, A ;
LOUIE, SG ;
COHEN, ML .
EUROPHYSICS LETTERS, 1994, 28 (05) :335-340
[6]   Field emission from carbon nanotubes:: the first five years [J].
Bonard, JM ;
Kind, H ;
Stöckli, T ;
Nilsson, LA .
SOLID-STATE ELECTRONICS, 2001, 45 (06) :893-914
[7]   Effects of nanodomain formation on the electronic structure of doped carbon nanotubes [J].
Carroll, DL ;
Redlich, P ;
Blase, X ;
Charlier, JC ;
Curran, S ;
Ajayan, PM ;
Roth, S ;
Ruhle, M .
PHYSICAL REVIEW LETTERS, 1998, 81 (11) :2332-2335
[8]   A solid-state process for formation of boron nitride nanotubes [J].
Chen, Y ;
Chadderton, LT ;
FitzGerald, J ;
Williams, JS .
APPLIED PHYSICS LETTERS, 1999, 74 (20) :2960-2962
[9]   BORON-NITRIDE NANOTUBES [J].
CHOPRA, NG ;
LUYKEN, RJ ;
CHERREY, K ;
CRESPI, VH ;
COHEN, ML ;
LOUIE, SG ;
ZETTL, A .
SCIENCE, 1995, 269 (5226) :966-967
[10]   Engineering carbon nanotubes and nanotube circuits using electrical breakdown [J].
Collins, PC ;
Arnold, MS ;
Avouris, P .
SCIENCE, 2001, 292 (5517) :706-709