AlN/GaN and (Al,Ga)N/AlN/GaN two-dimensional electron gas structures grown by plasma-assisted molecular-beam epitaxy

被引:278
作者
Smorchkova, IP [1 ]
Chen, L
Mates, T
Shen, L
Heikman, S
Moran, B
Keller, S
DenBaars, SP
Speck, JS
Mishra, UK
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA
关键词
D O I
10.1063/1.1412273
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report on an extensive study of the two-dimensional electron gas (2DEG) structures containing AlN layers. It is shown that the presence of large polarization fields in the AlN barrier layer in AlN/GaN heterostructures results in high values of the 2DEG sheet density of up to 3.6x10(13) cm(-2). Room-temperature sheet resistance of 180 Omega/square is demonstrated in the AlN/GaN structure with a 35 Angstrom AlN barrier. As a result of reduced alloy disorder scattering, low-temperature electron mobility is significantly enhanced in AlN/GaN heterostructures in comparison to AlGaN/GaN structures with similar values of the 2DEG sheet density. The growth of GaN cap layers on top of AlN/GaN structures with relatively thick (similar to 35 Angstrom) AlN barriers is found to lead to a significant decrease in the 2DEG sheet density. However, inserting a thin (similar to 10 Angstrom) AlN layer between AlxGa1-xN and GaN in the AlxGa1-xN/GaN (x similar to0.2-0.45) 2DEG structures does not affect the 2DEG sheet density and results in an increase of the low-temperature electron mobility in comparison to standard AlGaN/GaN structures. At room temperature, a combination of the high 2DEG sheet density of 2.15x10(13) cm(-2) and high electron mobility of 1500 cm(2)/V s in Al0.37Ga0.63N/AlN/GaN yielded a low sheet resistance value of 194 Omega/square. (C) 2001 American Institute of Physics.
引用
收藏
页码:5196 / 5201
页数:6
相关论文
共 16 条
[1]   Low interface state density AlN/GaN MISFETs [J].
Alekseev, E ;
Eisenbach, A ;
Pavlidis, D .
ELECTRONICS LETTERS, 1999, 35 (24) :2145-2146
[2]   GaN FETs for microwave and high-temperature applications [J].
Binari, SC ;
Doverspike, K ;
Kelner, G ;
Dietrich, HB ;
Wickenden, AE .
SOLID-STATE ELECTRONICS, 1997, 41 (02) :177-180
[3]   Electron transport in AlGaN-GaN heterostructures grown on 6H-SiC substrates [J].
Gaska, R ;
Yang, JW ;
Osinsky, A ;
Chen, Q ;
Khan, MA ;
Orlov, AO ;
Snider, GL ;
Shur, MS .
APPLIED PHYSICS LETTERS, 1998, 72 (06) :707-709
[4]   MONTE-CARLO SIMULATION OF ELECTRON-TRANSPORT IN GALLIUM NITRIDE [J].
GELMONT, B ;
KIM, K ;
SHUR, M .
JOURNAL OF APPLIED PHYSICS, 1993, 74 (03) :1818-1821
[5]   Control of GaN surface morphologies using plasma-assisted molecular beam epitaxy [J].
Heying, B ;
Averbeck, R ;
Chen, LF ;
Haus, E ;
Riechert, H ;
Speck, JS .
JOURNAL OF APPLIED PHYSICS, 2000, 88 (04) :1855-1860
[6]   Effect of polarization fields on transport properties in AlGaN/GaN heterostructures [J].
Hsu, L ;
Walukiewicz, W .
JOURNAL OF APPLIED PHYSICS, 2001, 89 (03) :1783-1789
[7]   STUDY OF CRACKING MECHANISM IN GAN/ALPHA-AL2O3 STRUCTURE [J].
ITOH, N ;
RHEE, JC ;
KAWABATA, T ;
KOIKE, S .
JOURNAL OF APPLIED PHYSICS, 1985, 58 (05) :1828-1837
[8]   An AlN/GaN insulated gate heterostructure field effect transistor with regrown n+ GaN source and drain contact [J].
Kawai, H ;
Hara, M ;
Nakamura, F ;
Asatsuma, T ;
Kobayashi, T ;
Imanaga, S .
JOURNAL OF CRYSTAL GROWTH, 1998, 189 :738-741
[9]   AlGaN/GaN heterojunction field effect transistors grown by nitrogen plasma assisted molecular beam epitaxy [J].
Micovic, M ;
Kurdoghlian, A ;
Janke, P ;
Hashimoto, P ;
Wong, DWS ;
Moon, JS ;
McCray, L ;
Nguyen, C .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2001, 48 (03) :591-596
[10]   AlN and AlGaN growth using low-pressure metalorganic chemical vapor deposition [J].
Nakamura, F ;
Hashimoto, S ;
Hara, M ;
Imanaga, S ;
Ikeda, M ;
Kawai, H .
JOURNAL OF CRYSTAL GROWTH, 1998, 195 (1-4) :280-285