Neuritic beading induced by activated microglia is an early feature of neuronal dysfunction toward neuronal death by inhibition of mitochondrial respiration and axonal transport

被引:225
作者
Takeuchi, H [1 ]
Mizuno, T [1 ]
Zhang, GQ [1 ]
Wang, JY [1 ]
Kawanokuchi, J [1 ]
Kuno, R [1 ]
Suzumura, A [1 ]
机构
[1] Nagoya Univ, Dept Neuroimmunol, Environm Med Res Inst, Chikusa Ku, Nagoya, Aichi 4648601, Japan
关键词
D O I
10.1074/jbc.M413863200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent studies suggest that excitotoxicity may contribute to neuronal damage in neurodegenerative diseases including Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, and multiple sclerosis. Activated microglia have been observed around degenerative neurons in these diseases, and they are thought to act as effector cells in the degeneration of neural cells in the central nervous system. Neuritic beading, focal bead-like swellings in the dendrites and axons, is a neuropathological sign in epilepsy, trauma, ischemia, aging, and neurodegenerative diseases. Previous reports showed that neuritic beading is induced by various stimuli including glutamate or nitric oxide and is a neuronal response to harmful stimuli. However, the precise physiologic significance of neuritic beading is unclear. We provide evidence that neuritic beading induced by activated microglia is a feature of neuronal cell dysfunction toward neuronal death, and the neurotoxicity of activated microglia is mediated through N-methyl-D-aspartate (NMDA) receptor signaling. Neuritic beading occurred concordant with a rapid drop in intracellular ATP levels and preceded neuronal death. The actual neurite beads consisted of collapsed cytoskeletal proteins and motor proteins arising from impaired neuronal transport secondary to cellular energy loss. The drop in intracellular ATP levels was because of the inhibition of mitochondrial respiratory chain complex IV activity downstream of NMDA receptor signaling. Blockage of NMDA receptors nearly completely abrogated mitochondrial dysfunction and neurotoxicity. Thus, neuritic beading induced by activated microglia occurs through NMDA receptor signaling and represents neuronal cell dysfunction preceding neuronal death. Blockage of NMDA receptors may be an effective therapeutic approach for neurodegenerative diseases.
引用
收藏
页码:10444 / 10454
页数:11
相关论文
共 64 条
[41]   An inflammatory review of Parkinson's disease [J].
Orr, CF ;
Rowe, DB ;
Halliday, GM .
PROGRESS IN NEUROBIOLOGY, 2002, 68 (05) :325-340
[42]  
Overly CC, 1996, J CELL SCI, V109, P971
[43]   Rapid alterations in dendrite morphology during sublethal hypoxia or glutamate receptor activation [J].
Park, JS ;
Bateman, MC ;
Goldberg, MP .
NEUROBIOLOGY OF DISEASE, 1996, 3 (03) :215-227
[44]   Retinal ganglion cells resistant to advanced glaucoma: A postmortem study of human retinas with the carbocyanine dye DiI [J].
Pavlidis, M ;
Stupp, T ;
Naskar, R ;
Cengiz, C ;
Thanos, S .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2003, 44 (12) :5196-5205
[45]   Glutamate-mediated inhibition of oxidative phosphorylation in cultured retinal cells [J].
Rego, AC ;
Santos, MS ;
Oliveira, CR .
NEUROCHEMISTRY INTERNATIONAL, 2000, 36 (02) :159-166
[46]   Oxidative stress induces axonal beading in cultured human brain tissue [J].
Roediger, B ;
Armati, PJ .
NEUROBIOLOGY OF DISEASE, 2003, 13 (03) :222-229
[47]   Accumulation of phosphorylated α-synuclein in aging human brain [J].
Saito, Y ;
Kawashima, A ;
Ruberu, NN ;
Fujiwara, H ;
Koyama, S ;
Sawabe, M ;
Arai, T ;
Nagura, H ;
Yamanouchi, H ;
Hasegawa, M ;
Iwatsubo, T ;
Murayama, S .
JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 2003, 62 (06) :644-654
[48]   PRODUCTION OF TUMOR NECROSIS FACTOR-ALPHA BY MICROGLIA AND ASTROCYTES IN CULTURE [J].
SAWADA, M ;
KONDO, N ;
SUZUMURA, A ;
MARUNOUCHI, T .
BRAIN RESEARCH, 1989, 491 (02) :394-397
[49]   Microglia rules: insights into micoglial-neuronal signaling [J].
Schwab, JM ;
Schluesener, HJ .
CELL DEATH AND DIFFERENTIATION, 2004, 11 (12) :1245-1246
[50]   Protective autoimmunity against the enemy within: fighting glutamate toxicity [J].
Schwartz, M ;
Shaked, I ;
Fisher, J ;
Mizrahi, T ;
Schori, H .
TRENDS IN NEUROSCIENCES, 2003, 26 (06) :297-302