Practical filtering with sequential parameter learning

被引:49
作者
Polson, Nicholas G. [1 ]
Stroud, Jonathan R. [2 ]
Mueller, Peter [3 ]
机构
[1] Univ Chicago, Grad Sch Business, Chicago, IL 60637 USA
[2] Univ Penn, Philadelphia, PA 19104 USA
[3] Univ Texas Houston, MD Anderson Canc Ctr, Houston, TX 77030 USA
关键词
filtering; Markov chain Monte Carlo methods; particle filtering; sequential parameter learning; spatiotemporal models; state space models;
D O I
10.1111/j.1467-9868.2007.00642.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The paper develops a simulation-based approach to sequential parameter learning and filtering in general state space models. Our approach is based on approximating the target posterior by a mixture of fixed lag smoothing distributions. Parameter inference exploits a sufficient statistic structure and the methodology can be easily implemented by modifying state space smoothing algorithms. We avoid reweighting particles and hence sample degeneracy problems that plague particle filters that use sequential importance sampling. The method is illustrated by using two examples: a benchmark auto-regressive model with observation error and a high dimensional dynamic spatiotemporal model. We show that the method provides accurate inference in the presence of outliers, model misspecification and high dimensionality.
引用
收藏
页码:413 / 428
页数:16
相关论文
共 38 条
[31]  
Pitt MK, 2001, STAT ENG IN, P273
[32]   Bayesian methods for hidden Markov models: Recursive computing in the 21st century [J].
Scott, SL .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (457) :337-351
[33]   Likelihood analysis of non-Gaussian measurement time series [J].
Shephard, N ;
Pitt, MK .
BIOMETRIKA, 1997, 84 (03) :653-667
[34]   Particle filters for state-space models with the presence of unknown static parameters [J].
Storvik, G .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) :281-289
[35]  
Stroud J. R., 2004, STATE SPACE UNOBSERV, P236
[36]   Nonlinear state-space models with state-dependent variances [J].
Stroud, JR ;
Müller, P ;
Polson, NG .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2003, 98 (462) :377-386
[37]  
WEINBERG J, 2007, IN PRESS J AM STAT A
[38]   Estimation of parameterized spatio-temporal dynamic models [J].
Xu, Ke ;
Wikle, Christopher K. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (02) :567-588