Network Meta-Analysis with Competing Risk Outcomes

被引:47
作者
Ades, A. E. [1 ]
Mavranezouli, Ifigeneia [2 ]
Dias, Sofia [1 ]
Welton, Nicky J. [1 ]
Whittington, Craig [2 ]
Kendall, Tim [3 ]
机构
[1] Univ Bristol, Dept Community Based Med, Bristol BS6 6RT, Avon, England
[2] UCL, Natl Collaborating Ctr Mental Hlth, Ctr Outcomes Res & Effectiveness, Res Dept Clin Educ & Hlth Psychol, London, England
[3] Royal Coll Psychiatrists, Res & Training Unit, Natl Collaborating Ctr Mental Hlth, London SW1X 8PG, England
基金
英国医学研究理事会;
关键词
antipsychotic medication; Markov model; meta-analysis; mixed treatment comparisons; schizophrenia; MIXED TREATMENT COMPARISONS; MULTIPLE OUTCOMES; TRIALS; MODEL;
D O I
10.1111/j.1524-4733.2010.00784.x
中图分类号
F [经济];
学科分类号
02 ;
摘要
Background: Cost-effectiveness analysis often requires information on the effectiveness of interventions on multiple outcomes, and commonly these take the form of competing risks. Nevertheless, methods for synthesis of randomized controlled trials with competing risk outcomes are limited. Objective: The aim of this study was to develop and illustrate flexible evidence synthesis methods for trials reporting competing risk results, which allow for studies with different follow-up times, and that take account of the statistical dependencies between outcomes, regardless of the number of outcomes and treatments. Methods: We propose a competing risk meta-analysis based on hazards, rather than probabilities, estimated in a Bayesian Markov chain Monte Carlo (MCMC) framework using WinBUGS software. Our approach builds on existing work on mixed treatment comparison (network) meta-analysis, which can be applied to any number of treatments, and any number of competing outcomes, and to data sets with varying follow-up times. We show how a fixed effect model can be estimated, and two random treatment effect models with alternative structures for between-trial variation. We suggest methods for choosing between these alternative models. Results: We illustrate the methods by applying them to a data set involving 17 trials comparing nine antipsychotic treatments for schizophrenia including placebo, on three competing outcomes: relapse, discontinuation because of intolerable side effects, and discontinuation for other reasons. Conclusions: Bayesian MCMC provides a flexible framework for synthesis of competing risk outcomes with multiple treatments, particularly suitable for embedding within probabilistic cost-effectiveness analysis.
引用
收藏
页码:976 / 983
页数:8
相关论文
共 27 条
[11]   Comparative efficacy and acceptability of 12 new-generation antidepressants: a multiple-treatments meta-analysis [J].
Cipriani, Andrea ;
Furukawa, Toshiaki A. ;
Salanti, Georgia ;
Geddes, John R. ;
Higgins, Julian P. T. ;
Churchill, Rachel ;
Watanabe, Norio ;
Nakagawa, Atsuo ;
Omori, Ichiro M. ;
McGuire, Hugh ;
Tansella, Michele ;
Barbui, Corrado .
LANCET, 2009, 373 (9665) :746-758
[12]  
Higgins JPT, 1996, STAT MED, V15, P2733, DOI 10.1002/(SICI)1097-0258(19961230)15:24<2733::AID-SIM562>3.0.CO
[13]  
2-0
[14]   Meta-analysis of mixed treatment comparisons at multiple follow-up times [J].
Lu, G. ;
Ades, A. E. ;
Sutton, A. J. ;
Cooper, N. J. ;
BriggS, A. H. ;
Caldwell, D. M. .
STATISTICS IN MEDICINE, 2007, 26 (20) :3681-3699
[15]   Assessing evidence inconsistency in mixed treatment comparisons [J].
Lu, Guobing ;
Ades, A. E. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (474) :447-459
[16]   Modeling between-trial variance structure in mixed treatment comparisons [J].
Lu, Guobing ;
Ades, Ae .
BIOSTATISTICS, 2009, 10 (04) :792-805
[17]   Network meta-analysis for indirect treatment comparisons [J].
Lumley, T .
STATISTICS IN MEDICINE, 2002, 21 (16) :2313-2324
[18]   Multivariate meta-analysis [J].
Nam, IS ;
Mengersen, K ;
Garthwaite, P .
STATISTICS IN MEDICINE, 2003, 22 (14) :2309-2333
[19]   An evaluation of bivariate random-effects meta-analysis for the joint synthesis of two correlated outcomes [J].
Riley, R. D. ;
Abrams, K. R. ;
Lambert, P. C. ;
Sutton, A. J. ;
Thompson, J. R. .
STATISTICS IN MEDICINE, 2007, 26 (01) :78-97
[20]  
Spiegelhalter D., 1998, Bayesian deviance, the effective number of parameters, and the comparison of arbitrarily complex models