Basal chromatin modification at the IL-4 gene in helper T cells

被引:31
作者
Grogan, JL
Wang, ZE
Stanley, S
Harmon, B
Loots, GG
Rubin, EM
Locksley, RM
机构
[1] Univ Calif San Francisco, Howard Hughes Med Inst, Dept Med, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Howard Hughes Med Inst, Dept Microbiol Immunol, San Francisco, CA 94143 USA
[3] Univ Calif San Francisco, Howard Hughes Med Inst, Dept Biochem & Biophys, San Francisco, CA 94143 USA
[4] Lawrence Berkeley Natl Lab, Genome Sci Dept, Berkeley, CA 94720 USA
关键词
D O I
10.4049/jimmunol.171.12.6672
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Chromatin immunoprecipitations in naive CD4, but not CD8, T cells, demonstrated association of the IL-4 promoter with acetylated histone. Histone modifications and rapid IL-4 transcription were absent in conserved noncoding sequence 1 (CNS-1)(-/-) cells lacking an 8-kb-distant enhancer in the IL-4/IL-13 intergenic region, but also in CD4(-/-) and Itk(-/-) cells, which have similar Th2 deficiencies. Histones associated with the IL-13 promoter were not similarly acetylated in naive T cells, but became acetylated in differentiated Th2 cells. Conversely, Th1 differentiation induced histone methylation at the type 2 cytokine locus. Like CD4(-/-) and Itk(-/-) mice, CNS-1(-/-) BALB/c mice were highly resistant to the Th2-inducing protozoan, Leishmania major. CNS-1 deficiency led to failure of IL-4 gene repositioning to heterochromatin after Th1 polarization, possibly related to the presence of reiterative Ikaros binding sites in the intergenic element. Hyperacetylation of nonexpressed genes may serve to mark lineage-specific loci for rapid expression and further modification.
引用
收藏
页码:6672 / 6679
页数:8
相关论文
共 45 条
[1]   Deciphering the transcriptional histone acetylation code for a human gene [J].
Agalioti, T ;
Chen, GY ;
Thanos, D .
CELL, 2002, 111 (03) :381-392
[2]   Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation [J].
Agarwal, S ;
Rao, A .
IMMUNITY, 1998, 9 (06) :765-775
[3]   Epigenetic consequences of nucleosome dynamics [J].
Ahmad, K ;
Henikoff, S .
CELL, 2002, 111 (03) :281-284
[4]   TH cell differentiation is accompanied by dynamic changes in histone acetylation of cytokine genes [J].
Avni, O ;
Lee, D ;
Macian, F ;
Szabo, SJ ;
Glimcher, LH ;
Rao, A .
NATURE IMMUNOLOGY, 2002, 3 (07) :643-651
[5]   Mouse CD1-specific NK1 T cells: Development, specificity, and function [J].
Bendelac, A ;
Rivera, MN ;
Park, SH ;
Roark, JH .
ANNUAL REVIEW OF IMMUNOLOGY, 1997, 15 :535-562
[6]   Helper T cell differentiation is controlled by the cell cycle [J].
Bird, JJ ;
Brown, DR ;
Mullen, AC ;
Moskowitz, NH ;
Mahowald, MA ;
Sider, JR ;
Gajewski, TF ;
Wang, CR ;
Reiner, SL .
IMMUNITY, 1998, 9 (02) :229-237
[7]  
BROWN AJ, 1997, CHARACTERIZATION POR, V4, P1
[8]   Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin [J].
Brown, KE ;
Guest, SS ;
Smale, ST ;
Hahm, K ;
Merkenschlager, M ;
Fisher, AG .
CELL, 1997, 91 (06) :845-854
[9]   Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4 [J].
Cirillo, LA ;
Lin, FR ;
Cuesta, I ;
Friedman, D ;
Jarnik, M ;
Zaret, KS .
MOLECULAR CELL, 2002, 9 (02) :279-289
[10]   Targeting of Ikaros to pericentromeric heterochromatin by direct DNA binding [J].
Cobb, BS ;
Morales-Alcelay, S ;
Kleiger, G ;
Brown, KE ;
Fisher, AG ;
Smale, ST .
GENES & DEVELOPMENT, 2000, 14 (17) :2146-2160