Use of Droplet Digital PCR for Estimation of Fish Abundance and Biomass in Environmental DNA Surveys

被引:224
作者
Doi, Hideyuki [1 ]
Uchii, Kimiko [1 ,2 ]
Takahara, Teruhiko [3 ]
Matsuhashi, Saeko [1 ]
Yamanaka, Hiroki [4 ]
Minamoto, Toshifumi [5 ]
机构
[1] Hiroshima Univ, Inst Sustainable Sci & Dev, Higashihiroshima 724, Japan
[2] Osaka Ohtani Univ, Fac Pharm, Tondabayashi, Japan
[3] Hiroshima Univ, Grad Sch Integrated Arts & Sci, Higashihiroshima 724, Japan
[4] Ryukoku Univ, Fac Sci & Technol, Dept Environm Solut Technol, Otsu, Shiga 52021, Japan
[5] Kobe Univ, Grad Sch Human Dev & Environm, Kobe, Hyogo 657, Japan
来源
PLOS ONE | 2015年 / 10卷 / 03期
关键词
REAL-TIME PCR; QUANTIFICATION; QUANTITATION;
D O I
10.1371/journal.pone.0122763
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An environmental DNA (eDNA) analysis method has been recently developed to estimate the distribution of aquatic animals by quantifying the number of target DNA copies with quantitative real-time PCR (qPCR). A new quantitative PCR technology, droplet digital PCR (ddPCR), partitions PCR reactions into thousands of droplets and detects the amplification in each droplet, thereby allowing direct quantification of target DNA. We evaluated the quantification accuracy of qPCR and ddPCR to estimate species abundance and biomass by using eDNA in mesocosm experiments involving different numbers of common carp. We found that ddPCR quantified the concentration of carp eDNA along with carp abundance and biomass more accurately than qPCR, especially at low eDNA concentrations. In addition, errors in the analysis were smaller in ddPCR than in qPCR. Thus, ddPCR is better suited to measure eDNA concentration in water, and it provides more accurate results for the abundance and biomass of the target species than qPCR. We also found that the relationship between carp abundance and eDNA concentration was stronger than that between biomass and eDNA by using both ddPCR and qPCR; this suggests that abundance can be better estimated by the analysis of eDNA for species with fewer variations in body mass.
引用
收藏
页数:11
相关论文
共 30 条
[1]   Environmental Conditions Influence eDNA Persistence in Aquatic Systems [J].
Barnes, Matthew A. ;
Turner, Cameron R. ;
Jerde, Christopher L. ;
Renshaw, Mark A. ;
Chadderton, W. Lindsay ;
Lodge, David M. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (03) :1819-1827
[2]   Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus [J].
Dejean, Tony ;
Valentini, Alice ;
Miquel, Christian ;
Taberlet, Pierre ;
Bellemain, Eva ;
Miaud, Claude .
JOURNAL OF APPLIED ECOLOGY, 2012, 49 (04) :953-959
[3]   The Relationship between the Distribution of Common Carp and Their Environmental DNA in a Small Lake [J].
Eichmiller, Jessica J. ;
Bajer, Przemyslaw G. ;
Sorensen, Peter W. .
PLOS ONE, 2014, 9 (11)
[4]   Species detection using environmental DNA from water samples [J].
Ficetola, Gentile Francesco ;
Miaud, Claude ;
Pompanon, Francois ;
Taberlet, Pierre .
BIOLOGY LETTERS, 2008, 4 (04) :423-425
[5]   Environmental DNA as a new method for early detection of New Zealand mudsnails (Potamopyrgus antipodarum) [J].
Goldberg, Caren S. ;
Sepulveda, Adam ;
Ray, Andrew ;
Baumgardt, Jeremy ;
Waits, Lisette P. .
FRESHWATER SCIENCE, 2013, 32 (03) :792-800
[6]   Molecular Detection of Vertebrates in Stream Water: A Demonstration Using Rocky Mountain Tailed Frogs and Idaho Giant Salamanders [J].
Goldberg, Caren S. ;
Pilliod, David S. ;
Arkle, Robert S. ;
Waits, Lisette P. .
PLOS ONE, 2011, 6 (07)
[7]   Comparison of Droplet Digital PCR to Real-Time PCR for Quantitative Detection of Cytomegalovirus [J].
Hayden, R. T. ;
Gu, Z. ;
Ingersoll, J. ;
Abdul-Ali, D. ;
Shi, L. ;
Pounds, S. ;
Caliendo, A. M. .
JOURNAL OF CLINICAL MICROBIOLOGY, 2013, 51 (02) :540-546
[8]   High-Throughput Droplet Digital PCR System for Absolute Quantitation of DNA Copy Number [J].
Hindson, Benjamin J. ;
Ness, Kevin D. ;
Masquelier, Donald A. ;
Belgrader, Phillip ;
Heredia, Nicholas J. ;
Makarewicz, Anthony J. ;
Bright, Isaac J. ;
Lucero, Michael Y. ;
Hiddessen, Amy L. ;
Legler, Tina C. ;
Kitano, Tyler K. ;
Hodel, Michael R. ;
Petersen, Jonathan F. ;
Wyatt, Paul W. ;
Steenblock, Erin R. ;
Shah, Pallavi H. ;
Bousse, Luc J. ;
Troup, Camille B. ;
Mellen, Jeffrey C. ;
Wittmann, Dean K. ;
Erndt, Nicholas G. ;
Cauley, Thomas H. ;
Koehler, Ryan T. ;
So, Austin P. ;
Dube, Simant ;
Rose, Klint A. ;
Montesclaros, Luz ;
Wang, Shenglong ;
Stumbo, David P. ;
Hodges, Shawn P. ;
Romine, Steven ;
Milanovich, Fred P. ;
White, Helen E. ;
Regan, John F. ;
Karlin-Neumann, George A. ;
Hindson, Christopher M. ;
Saxonov, Serge ;
Colston, Bill W. .
ANALYTICAL CHEMISTRY, 2011, 83 (22) :8604-8610
[9]   Absolute quantification by droplet digital PCR versus analog real-time PCR [J].
Hindson, Christopher M. ;
Chevillet, John R. ;
Briggs, Hilary A. ;
Gallichotte, Emily N. ;
Ruf, Ingrid K. ;
Hindson, Benjamin J. ;
Vessella, Robert L. ;
Tewari, Muneesh .
NATURE METHODS, 2013, 10 (10) :1003-+
[10]   Molecular quantification of environmental DNA using microfluidics and digital PCR [J].
Hoshino, Tatsuhiko ;
Inagaki, Fumio .
SYSTEMATIC AND APPLIED MICROBIOLOGY, 2012, 35 (06) :390-395