One or two frequencies? The empirical mode decomposition answers

被引:461
作者
Rilling, Gabriel [1 ]
Flandrin, Patrick [1 ]
机构
[1] Ecole Normale Super Lyon, Dept Phys, CNRS, UMR 5672, F-69364 Lyon 07, France
关键词
empirical mode decomposition (EMD); resolution; spectral analysis; time frequency;
D O I
10.1109/TSP.2007.906771
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper investigates how the empirical mode decomposition (EMD), a fully data-driven technique recently introduced for decomposing any oscillatory waveform into zero-mean components, behaves in the case of a composite two-tones signal. Essentially two regimes are shown to exist, depending on whether the amplitude ratio of the tones is greater or smaller than unity, and the corresponding resolution properties of the EMD turn out to be in good agreement with intuition and physical interpretation. A refined analysis is provided for quantifying the observed behaviors and theoretical claims are supported by numerical experiments. The analysis is then extended to a nonlinear model where the same two regimes are shown to exist and the resolution properties of the EMD are assessed.
引用
收藏
页码:85 / 95
页数:11
相关论文
共 14 条
  • [1] Underdetermined Blind Audio Source Separation Using Modal Decomposition
    Aissa-El-Bey, Abdeldjalil
    Abed-Meraim, Karim
    Grenier, Yves
    [J]. EURASIP JOURNAL ON AUDIO SPEECH AND MUSIC PROCESSING, 2007, 2007 (1)
  • [2] On the intrinsic time scales involved in synchronization: A data-driven approach
    Chavez, M
    Adam, C
    Navarro, V
    Boccaletti, S
    Martinerie, J
    [J]. CHAOS, 2005, 15 (02)
  • [3] 11-year solar cycle in the stratosphere extracted by the empirical mode decomposition method
    Coughlin, KT
    Tung, KK
    [J]. SOLAR VARIABILITY AND CLIMATE CHANGE, 2004, 34 (02): : 323 - 329
  • [4] Empirical mode decomposition as a filter bank
    Flandrin, P
    Rilling, G
    Gonçalvés, P
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2004, 11 (02) : 112 - 114
  • [5] Flandrin P., 2004, INT J WAVELETS MULTI, V2, P477, DOI [DOI 10.1142/S0219691304000561, 10.1142/S0219691304000561]
  • [6] The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
    Huang, NE
    Shen, Z
    Long, SR
    Wu, MLC
    Shih, HH
    Zheng, QN
    Yen, NC
    Tung, CC
    Liu, HH
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1971): : 903 - 995
  • [7] MEESON JRN, 2005, HILBERT HUANG TRANSF
  • [8] Meeson RN, 2005, INTERD MATH SCI, V5, P75
  • [9] Rilling G., 2006, IEEE INT C AC SPEECH
  • [10] Rilling G., 2003, PROC IEEE EURASIP WO