Inventories and behavior of particulate organic carbon in the Laptev and East Siberian seas

被引:67
作者
Sanchez-Garcia, Laura [1 ]
Alling, Vanja [1 ]
Pugach, Svetlana [2 ]
Vonk, Jorien E. [1 ]
van Dongen, Bart [3 ]
Humborg, Christoph [1 ,4 ]
Dudarev, Oleg [2 ]
Semiletov, Igor [2 ,5 ]
Gustafsson, Orjan [1 ]
机构
[1] Stockholm Univ, Dept Appl Environm Sci, Dept Appl Environ Sci 2011, SE-11418 Stockholm, Sweden
[2] Russian Acad Sci, Far Eastern Branch, Pacific Oceanol Inst, Vladivostok 690950, Russia
[3] Univ Manchester, Williamson Res Ctr Mol Environm Sci, Sch Earth Atmospher & Environm Sci, Manchester M13 9PL, Lancs, England
[4] Stockholm Univ, Baltic Nest Inst, SE-11418 Stockholm, Sweden
[5] Univ Alaska Fairbanks, Int Arctic Res Ctr, Fairbanks, AK USA
基金
美国海洋和大气管理局; 瑞典研究理事会;
关键词
ARCTIC-OCEAN; ISOTOPIC COMPOSITION; CHEMISTRY DYNAMICS; CLIMATE-CHANGE; RIVER-RUNOFF; BALTIC SEA; MATTER; SHELF; PERMAFROST; COASTAL;
D O I
10.1029/2010GB003862
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Fluvial and erosional release processes in permafrost-dominated Eurasian Arctic cause transport of large amounts of particulate organic carbon (POC) to coastal waters. The marine fate of this terrestrial POC (terr-POC), water column degradation, burial in shelf sediments, or export to depth, impacts the potential for climate-carbon feedback. As part of the International Siberian Shelf Study (ISSS-08; August-September 2008), the POC distribution, inventory, and fate in the water column of the extensive yet poorly studied Eurasian Arctic Shelf seas were investigated. The POC concentration spanned 1-152 mu M, with highest values in the SE Laptev Sea. The POC inventory was constrained for the Laptev (1.32 +/- 0.09 Tg) and East Siberian seas (2.85 +/- 0.20 Tg). A hydraulic residence time of 3.5 +/- 2 years for these Siberian shelf seas yielded a combined annual terr-POC removal flux of 3.9 +/- 1.4 Tg yr(-1). Accounting for sediment burial and shelf-break exchange, the terr-POC water column degradation was similar to 2.5 +/- 1.6 Tg yr(-1), corresponding to a first-order terr-POC degradation rate constant of 1.4 +/- 0.9 yr(-1), which is 5-10 times faster than reported for terr-DOC degradation in the Arctic Ocean. This terr-POC degradation flux thus contributes substantially to the dissolved inorganic carbon excess of 10 Tg C observed during ISSS-08 for these waters. This evaluation suggests that extensive decay of terr-POC occurs already in the water column and contributes to outgassing of CO2. This process should be considered as a geographically dislocated carbon-climate coupling where thawing of vulnerable permafrost carbon on land is eventually adding CO2 above the ocean.
引用
收藏
页数:13
相关论文
共 79 条
[31]   Landscape partitioning and environmental gradient analyses of soil organic carbon in a permafrost environment [J].
Hugelius, Gustaf ;
Kuhry, Peter .
GLOBAL BIOGEOCHEMICAL CYCLES, 2009, 23
[32]   GLOBAL TRENDS IN THE NATURE OF ORGANIC-MATTER IN RIVER SUSPENSIONS [J].
ITTEKKOT, V .
NATURE, 1988, 332 (6163) :436-438
[33]   Hypsometry and volume of the Arctic Ocean and its constituent seas [J].
Jakobsson, M .
GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2002, 3
[34]   An improved bathymetric portrayal of the Arctic Ocean: Implications for ocean modeling and geological, geophysical and oceanographic analyses [J].
Jakobsson, Martin ;
Macnab, Ron ;
Mayer, Larry ;
Anderson, Robert ;
Edwards, Margo ;
Hatzky, Joern ;
Schenke, Hans Werner ;
Johnson, Paul .
GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (07)
[35]   Pathways and modification of the upper and intermediate waters of the Arctic Ocean [J].
Karcher, MJ ;
Oberhuber, JM .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2002, 107 (C6)
[36]  
Kosheleva V.A., 1999, Bottom Sediments of the Russian Arctic Seas
[37]   Radiocarbon of quaternary along shore and bottom deposits of the Lena and the Laptev Sea sediments [J].
Kuptsov, VM ;
Lisitsin, AP .
MARINE CHEMISTRY, 1996, 53 (3-4) :301-311
[38]   Rapid removal of terrigenous dissolved organic carbon over the Eurasian shelves of the Arctic Ocean [J].
Letscher, Robert T. ;
Hansell, Dennis A. ;
Kadko, David .
MARINE CHEMISTRY, 2011, 123 (1-4) :78-87
[39]  
Lisitzin AP., 1995, OCEANOLOGY, V34, P583
[40]   Modeling transport and fate of riverine dissolved organic carbon in the Arctic Ocean [J].
Manizza, M. ;
Follows, M. J. ;
Dutkiewicz, S. ;
McClelland, J. W. ;
Menemenlis, D. ;
Hill, C. N. ;
Townsend-Small, A. ;
Peterson, B. J. .
GLOBAL BIOGEOCHEMICAL CYCLES, 2009, 23