Changes in the Silanol Protonation State Measured In Situ at the Silica-Aqueous Interface

被引:39
作者
Brown, Matthew A. [1 ]
Huthwelker, Thomas [2 ]
Redondo, Amaia Beloqui [1 ]
Janousch, Markus [2 ]
Faubel, Manfred [3 ]
Arrell, Christopher A. [4 ]
Scarongella, Mariateresa [4 ]
Chergui, Majed [4 ]
van Bokhoven, Jeroen A. [1 ,2 ]
机构
[1] ETH, Inst Chem & Bioengn, CH-8093 Zurich, Switzerland
[2] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland
[3] Max Planck Inst Dynam & Self Org, D-37073 Gottingen, Germany
[4] Ecole Polytech Fed Lausanne, Lab Ultrafast Spect, CH-1015 Lausanne, Switzerland
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2012年 / 3卷 / 02期
关键词
SURFACE-CHEMISTRY; XPS; QUARTZ; XANES; SPECTROSCOPY; EXISTENCE; DELIVERY; EDGE;
D O I
10.1021/jz201533w
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recent nanomedical applications have again highlighted the significance of silica surface chemistry in solution. Here, we report in situ electronic structure measurements at the silica-aqueous interface as a function of pH for nanoparticles (NPs) of 7, 12, and 22 nm using a liquid microjet in combination with synchrotron radiation. The Si K-edge X-ray absorption near-edge spectroscopy (XANES) spectra reveal a change in shape of the Si 1s -> t(2) (Si 2p-3s) absorption brought about by changes in the silanol protonation state at the interface of the NPs as a result of changes in solution pH. Our results are consistent with the number of silanol groups changing the protonation state being inversely correlated with the SiO2 NP size. The importance of in situ studies is also demonstrated by comparing the XANES spectra of aqueous 7 nm SiO2 with the same dehydrated sample in vacuum.
引用
收藏
页码:231 / 235
页数:5
相关论文
共 26 条
[1]  
[Anonymous], 1979, CHEM SILICA SOLUBILI
[2]   Electronic structure of sub-10 nm colloidal silica nanoparticles measured by in situ photoelectron spectroscopy at the aqueous-solid interface [J].
Brown, Matthew A. ;
Seidel, Robert ;
Thuermer, Stephan ;
Faubel, Manfred ;
Hemminger, John C. ;
van Bokhoven, Jeroen A. ;
Winter, Bernd ;
Sterrer, Martin .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (28) :12720-12723
[3]  
Brown MA, 2009, ANNU REP PROG CHEM C, V105, P174, DOI 10.1039/b803023p
[4]   Bioactive silicon structure fabrication through nanoetching techniques [J].
Canham, LT .
ADVANCED MATERIALS, 1995, 7 (12) :1033-+
[5]   Surface charge of silica determined using X-ray photoelectron spectroscopy [J].
Cardenas, JF .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2005, 252 (2-3) :213-219
[6]  
Chin V, 2001, ADV MATER, V13, P1877, DOI 10.1002/1521-4095(200112)13:24<1877::AID-ADMA1877>3.0.CO
[7]  
2-4
[8]  
DAVOLI I, 1992, PHYS CHEM MINER, V19, P171, DOI 10.1007/BF00202105
[9]   Evidence of the existence of three types of species at the quartz-aqueous solution interface at pH 0-10: XPS surface group quantification and surface complexation modeling [J].
Duval, Y ;
Mielczarski, JA ;
Pokrovsky, OS ;
Mielczarski, E ;
Ehrhardt, JJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (11) :2937-2945
[10]   Reactions at surfaces: From atoms to complexity (Nobel lecture) [J].
Ertl, Gerhard .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (19) :3524-3535